
FUJITSU SEMICONDUCTOR
CONTROLLER MANUAL

F2MC-16LX
16-BIT MICROCONTROLLER

MB90500 Series

PROGRAMMING MANUAL

CM44-00201-1E

FUJITSU LIMITED

F2MC-16LX
16-BIT MICROCONTROLLER

MB90500 Series

PROGRAMMING MANUAL

i

PREFACE

Objectives and Intended Readership

The MB90500 series products are developed as the F2MC-16LX series general-purpose
products. These products are original 16-bit one-chip microcontrollers that support application
specific ICs (ASICs). They are suitable for use in various types of industrial equipment, office-
automation equipment, on-vehicle equipment, and other equipment that is required to operate at
high speed in real-time mode.

Trademarks

F2MC stands for FUJITSU Flexible Microcontroller.

Intended Readership

This manual is written for engineers involved in the development of products using the F2MC-
16LX series microcontrollers. It is designed specially for programmers working in assembly
language for use with F2MC-16LX series assemblers, and describes the various instructions
used with the F2MC-16LX series products. Be sure to read the entire manual carefully.

Configuration of this Manual

This manual consists of the nine chapters listed below:

Chapter 1 Overview of the F2MC-16LX CPU Core and Sample Configuration Including It

This chapter briefly describes the configuration of the F2MC-16LX CPU core, and presents
a sample configuration of a device incorporating it.

Chapter 2 Memory Space

This chapter describes the memory spaces of the F2MC-16LX CPU.

Chapter 3 Dedicated Registers

This chapter describes the dedicated registers of the F2MC-16LX CPU.

Chapter 4 General-purpose Registers

This chapter describes the general-purpose registers of the F2MC-16LX CPU.

Chapter 5 Prefix Codes

The function of an instruction can be modified by prefixing it with a code, or prefix code.
This chapter explains the prefix codes.

Chapter 6 Interrupt Handling

This chapter describes the F2MC-16LX interrupt handling functions and their operations.

Chapter 7 Addressing

This chapter explains the addressing mode for each instruction of the F2MC-16LX.

Chapter 8 Instruction Overview

This chapter explains the meanings of items and symbols used in explanations in Chapter
9, “Detailed Execution Instructions.”

Chapter 9 Detailed Execution Instructions

This chapter describes each execution instruction used in the assembler in an
alphabetical list.

ii

Appendix

The appendix section includes lists of instructions used in the F2MC-16LX, as well as the
related instruction maps.

References

The following manuals should be referenced along with this manual:

• F2MC-16LX/16L/16/16H/16F Assembler Manual

• F2MC-16LX Model-Specific Hardware Manual

 1998 FUJITSU LIMITED Printed in Japan

1. The contents of this document are subject to change without notice. Customers are advised to consult
with FUJITSU sales representatives beforeordering.

2. The information and circuit diagrams in this document are presented as examples of semiconductor
device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU
is unable to assume responsibility for infringement of any patent rights or other rights of third parties
arising from the use of this information or circuit diagrams.

3. The contents of this document may not be reproduced or copied without the permission of FUJITSU
LIMITED.

4. FUJITSU semiconductor devices are intended for use in standard applications (computers, office
automation and other office equipments, industrial, communications, and measurement equipments,
personal or household devices, etc.).
CAUTION:
Customers considering the use of our products in special applications where failure or abnormal
operation may directly affect human lives or cause physical injury or property damage, or where
extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls,
sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to
consult with FUJITSU sales representatives before such use. The company will not be responsible for
damages arising from such use without prior approval.

5. Any semiconductor devices have inherently a certain rate of failure.You must protect against injury,
damage or loss from such failures by incorporating safety design measures into your facility and
equipment such as redundancy, fire protection, and prevention of over-current levels and other
abnormal operating conditions.

6. If any products described in this document represent goods or technologies subject to certain
restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior
authorization by Japanese government should be required for export of those products from Japan.

iii

READING THIS MANUAL

Page Layout

In this manual, an entire section is presented on a single page or spread whenever possible.
You can thus view a section without having to flip pages.

The content of each section is summarized immediately below the title. You can obtain a rough
overview of this product by reading through these summaries.

Also, higher level section headings are given in lower sections so that you can know to which
section the text your are currently reading belongs.

Spread Layout

Subheading

iv

v

CONTENTS

CHAPTER 1 OVERVIEW OF THE F²MC-16LX CPU CORE AND SAMPLE
CONFIGURATION INCLUDING IT ..1

1.1 Overview of the F²MC-16LX CPU Core ...2
1.2 Sample Configuration of an F²MC-16LX Device ...3

CHAPTER 2 MEMORY SPACE ..5
2.1 CPU Memory Space ...6
2.2 Linear Addressing Mode ...8
2.3 Bank Addressing Mode ...10
2.4 Memory Space Divided into Banks and Value in Each Bank Register ...12
2.5 Data Configuration of and Access to Multi-byte Data in Memory ...14

CHAPTER 3 DEDICATED REGISTERS ...17
3.1 F2MC-16LX Dedicated Register Types ...18
3.2 Accumulator (A) ..20
3.3 User Stack Pointer (USP) and System Stack Pointer (SSP) ..22
3.4 Processor Status (PS) ..24

3.4.1 Interrupt Level Mask Register (ILM) ..25
3.4.2 Register bank pointer (RP) ..26
3.4.3 Condition Code Register (CCR) ..27

3.5 Program Counter (PC) ..28
3.6 Direct Page Register (DPR) ..29
3.7 Bank Registers ...30

CHAPTER 4 GENERAL-PURPOSE REGISTERS ..31
4.1 Register Banks in RAM ...32
4.2 Calling General-purpose Registers in RAM ..33

CHAPTER 5 PREFIX CODES ...35
5.1 Bank Select Prefix ..36
5.2 Common Register Bank Prefix (CMR) ..38
5.3 Flag Change Inhibit Prefix Code (NCC) ..39
5.4 Constraints Related to the Prefix Codes ...40

CHAPTER 6 INTERRUPT HANDLING ...43
6.1 Interrupt Handling ...44
6.2 Hardware Interrupt Operation Flow ..46
6.3 Interrupt Handling Flowchart and Saving the Contents of Registers ..48
6.4 Interrupt Vectors ...50
6.5 Extended Intelligent I/O Service ...52

6.5.1 Flowchart of extended intelligent I/O service operation ...54
6.5.2 Flowchart of extended intelligent I/O service application procedure ...55

6.6 Interrupt Control Register (ICR) ..56

vi

6.7 Meanings of the Bits of Interrupt Control Register (ICR) ... 58
6.8 Extended Intelligent I/O Service Descriptor (ISD) .. 60
6.9 Registers of Extended Intelligent I/O Service Descriptor ... 62
6.10 Exception Processing .. 64

CHAPTER 7 ADDRESSING ... 65
7.1 Effective Address Field .. 66
7.2 Direct Addressing ... 68
7.3 Indirect Addressing .. 70

CHAPTER 8 INSTRUCTION OVERVIEW .. 73
8.1 Instruction Overview .. 74
8.2 Symbols (Abbreviations) Used in Detailed Execution Instructions .. 76
8.3 Effective Address Field .. 78
8.4 Execution Cycles ... 80

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS ... 83

APPENDIX .. 299
Appendix A Explanation of Instruction Lists .. 300

A.1 Items Used in Instructions Lists ... 301
A.2 Symbols Used in Instructions Lists .. 303
A.3 Effective Address Field .. 305
A.4 Calculating the Number of Execution Cycles .. 306

Appendix B F2MC-16LX Instruction Lists (340 Instructions) ... 308
B.1 Transfer Instructions .. 309
B.2 Numeric Data Operation Instructions .. 311
B.3 Logical Data Operation Instruction .. 315
B.4 Shift Instruction .. 317
B.5 Branch Instructions .. 318
B.6 Other Instructions .. 320

Appendix C F2MC-16LX Instruction Maps .. 323
C.1 Structure of the Instruction Map .. 324
C.2 Basic Page Map .. 326
C.3 Bit Operation Instruction Map .. 328
C.4 Character String Operation Instruction Map .. 330
C.5 2-byte Instruction Map ... 332
C.6 ea-type Instruction Map ... 334
C.7 MOVEA RWi, ea Instruction Map .. 344
C.8 MOV Ri, ea Instruction Map .. 346
C.9 MOVW RWi, ea Instruction Map .. 348
C.10 MOV ea, Ri Instruction Map .. 350
C.11 MOVW ea, RWi Instruction Map .. 352
C.12 XCH Ri, ea Instruction Map ... 354
C.13 XCHW RWi, ea Instruction Map .. 356

INDEX .. 359

vii

FIGURES

Figure 1.2 F²MC-16LX Device Sample Configuration ..3

Figure 2.1 Example Relationship between the F2MC-16LX System and Memory Map6

Figure 2.2 Examples of Generating an Address in the Linear ..9

Figure 2.4 Example of the Physical Addresses of Each Space ..12

Figure 2.5a Multi-byte Data Layout in Memory ...14

Figure 2.5b Execution Example of an Instruction (MOVPW A, 080FFFFH) Accessing Multi-byte Data ..15

Figure 3.1 Dedicated Registers ..19

Figure 3.2a Example of Transferring 32-bit Data ...20

Figure 3.2b Example of Transferring Data between the AL and AH Registers by Means of the Data
Presentation Function ...21

Figure 3.3 Relationships between Stack Manipulation Instruction and Stack Pointer23

Figure 3.4 Processor Status (PS) Register Structure ...24

Figure 3.5 Program Counter (PC) ..28

Figure 3.6 Physical Address Specified in Direct Addressing Mode ..29

Figure 4.1 Relationship between Registers ..32

Figure 4.2 General-purpose Registers ...33

Figure 5.4a Instructions Rejecting Interrupt and Hold Requests ..40

Figure 5.4b Instructions Rejecting Interrupt and Hold Requests and Prefix Code40

Figure 5.4c Consecutive Prefix Codes ...41

Figure 6.2 From the Hardware Interrupt Occurrence to its Clearance ...46

Figure 6.3a Interrupt Handling Flowchart ...48

Figure 6.3b How the Contents of the Registers are Saved with Interrupt Handling49

Figure 6.5 Overview of Extended Intelligent I/O Service ..53

Figure 6.5.1 Extended Intelligent I/O Service Operation Flowchart ...54

Figure 6.5.2 Flowchart of Extended Intelligent I/O Service Application Procedure55

Figure 6.6 Interrupt Control Register (ICR) ..56

Figure 6.8 Structure of Extended Intelligent I/O Service Descriptor ...60

Figure 6.9a Structure of Extended Intelligent I/O Service Status Register (ISCS)62

Figure 6.9b Structure of I/O Register Address Pointer (IOA) ...63

Figure 6.9c Structure of data counter (DCT) ..63

Figure 7.3 Structure of Register List ...71

Figure C.1a Structure of the Instruction Map ..324

Figure C.1b Relationship Between Actual Instruction Codes and Instruction Maps325

viii

TABLES

Table 2.3a Default Spaces ... 10

Table 2.3b Bank Selection Prefix ... 11

Table 3.4.1 Interrupt Levels Indicated in the Interrupt Level Mask Register (ILM) 25

Table 4.1 Functions of Each Register .. 32

Table 5.1 Bank Select Prefixes .. 36

Table 6.4 Interrupt Vectors ... 50

Table 6.7a Mapping of ICS Bits, Channel Numbers, and Descriptor Addresses 58

Table 6.7b Extended Intelligent I/O Service End Status Bits (S0 and S1)
and End Conditions .. 59

Table 6.7c Interrupt Level Setting Bits and Associated Interrupt Levels .. 59

Table 7.1 Effective Address Field ... 66

Table 8.2 Symbols (abbreviations) Used in Detailed Execution Instructions 76

Table 8.3 Effective Address Field ... 78

Table 8.4a Execution Cycles Specific to Each Addressing Method of an Effective Address 80

Table 8.4b Correction Values for Cycles Used for Calculating Actual Execution Cycles 81

Table 8.4c Correction Values for Cycles Used for Calculating Program Fetch Cycles 81

Table 9 CALLV Vector List .. 123

Table A.1 Explanation of the Items Used in the Instruction Lists .. 301

Table A.2 Explanation of the Symbols Used in the Instruction Lists ... 303

Table A.3 Effective Address Field ... 305

Table A.4a Number of Execution Cycles for Designating Each Effective Address 306

Table A.4b Compensation Values for Calculating the Number of Execution Cycles 307

Table A.4c Compensation Values for Calculating The Number of Program Fetch Cycles 307

Table B.1a Transfer Instruction (Byte): 41 Instructions .. 309

Table B.1b Transfer Instruction (Word/Long-word): 38 Instructions .. 310

Table B.2a Addition and Subtraction (Byte/Word/Long-word): 42 Instructions 311

Table B.2b Increment and Decrement (Byte/Word/Long-word): 12 Instructions 312

Table B.2c Compare (Byte/Word/Long-word): 11 Instructions .. 312

Table B.2d Unsigned Multiplication and Division: 11 Instructions (Word/Long-word) 313

Table B.2e Signed Multiplication and Division: 11 Instructions (Word/Long-word) 314

Table B.3a Logic 1 (Byte/Word): 39 Instructions ... 315

Table B.3b Logic 2 (Long): 6 Instructions .. 316

Table B.3c Sign Inversion (Byte/Word): 6 Instructions .. 316

Table B.3d Normalize Instruction (Long): 1 Instruction .. 316

Table B.4a Shift Instructions (Byte/Word/Long-word): 18 Instructions .. 317

ix

Table B.5a Branch 1: 31 Instructions ..318

Table B.5b Branch 2: 19 Instructions ..319

Table B.6a Other Control Systems (Byte/Word/Long-word): 28 Instructions320

Table B.6b Bit Operation Instruction: 21 Instructions ...321

Table B.6c Accumulator Operation Instruction (Byte/Word): 6 Instructions ...321

Table B.6d String Instruction 10 Instructions ...322

Table C.2 Basic Page Map ..327

Table C.3 Bit Operation Instruction Map (first byte = 6CH) ..329

Table C.4 Character String Operation Instruction Map (first byte = 6EH) ..331

Table C.5 2-byte Instruction Map (first byte = 6FH) ...333

Table C.6a ea-byte Instruction (1) (first byte = 70H) ..335

Table C.6b ea-type Instruction (2) (first byte = 71H) ..336

Table C.6c ea-type Instruction (3) (first byte = 72H) ..337

Table C.6d ea-type Instruction (4) (first byte = 73H) ..338

Table C.6e ea-type Instruction (5) (first byte = 74H) ..339

Table C.6f ea-type Instruction (6) (first byte = 75H) ..340

Table C.6g ea-type Instruction (7) (first byte = 76H) ..341

Table C.6h ea-type Instruction (8) (first byte = 77H) ..342

Table C.6i ea-type Instruction (9) (first byte = 78H) ..343

Table C.7 MOVEA RWi, ea Instruction (first byte =79H) ...345

Table C.8 MOV Ri, ea Instruction (first byte =7AH) ...347

Table C.9 MOVW RWi, ea instruction (first byte = 7BH) ..349

Table C.10 MOV ea, Ri Instruction (first byte = 7CH) ..351

Table C.11 MOVW ea, RWi Instruction (first byte = 7DH) ...353

Table C.12 XCH Ri, ea Instruction (first byte = 7EH) ...355

Table C.13 XCHW RWi, ea instruction (first byte = 7FH) ..357

x

1

CHAPTER 1 OVERVIEW OF THE F²MC-16LX CPU
CORE AND SAMPLE CONFIGURATION
INCLUDING IT

This chapter briefly describes the configuration of the F²MC-16LX CPU core, and
presents a sample configuration of a device incorporating it.

1.1 Overview of the F²MC-16LX CPU Core

1.2 Sample Configuration of an F²MC-16LX Device

2

CHAPTER 1 OVERVIEW OF THE F²MC-16LX CPU CORE AND SAMPLE CONFIGURATION INCLUDING IT

1.1 Overview of the F²MC-16LX CPU Core

The F²MC-16F CPU core is an advanced 16-bit CPU designed for use in various types of
industrial equipment, office automation equipment, on-vehicle equipment, and other
equipment required to operate at high speed in real-time mode.

Overview of the F²MC-16LX CPU Core

The F²MC-16LX CPU core is an advanced 16-bit CPU designed for use in various types of
industrial equipment, office automation equipment, on-vehicle equipment, and other equipment
required to operate at high speed in real-time mode. The design of the F²MC-16LX instruction
set is optimized for use in controllers. The instructions can perform various types of control at
high speed and at high efficiency. The F²MC-16LX is a suitable CPU for processing 16-bit data.
Some of its instructions can be used also for 32-bit data processing, because its CPU
incorporates a 32-bit accumulator. The memory space of the F²MC-16LX can be expanded up
to 16 Mbytes. Each location in the memory space can be accessed using either a linear pointer
or a bank method. The instruction set is based on the F²MC-8 A-T architecture, but has been
enhanced by adding instructions that support high-level language, extending the addressing
mode, improving the multiplication and division instructions, and augmenting bit manipulation.

Features of the F²MC-16LX CPU Core

Minimum instruction execution time: 62.5 ns (with internal clock at 16 MHz)

Memory space: Up to 16 Mbytes, accessible using either a linear or bank mode

Instruction set optimized for use in controllers

• Cornucopia of data types: Bit, byte, word, and long word

• Extended addressing mode: 23 types

• High code efficiency

• Reinforcement of high-precision calculation (32 bits length) by means of a 32-bit
accumulator

Powerful interrupt functions

• Interrupt priority levels: 8 levels (programmable)

CPU-independent automatic transfer function

Extended intelligent I/O service: Up to 16 channels

Instruction supporting high-level language (C) and multitasking

• Use of a system stack pointer

• Cornucopia of pointers

• High symmetry of the instruction set

• Barrel shift instruction

Increased execution speed: Use of a 4-byte queue of instructions

3

CHAPTER 1 OVERVIEW OF THE F²MC-16LX CPU CORE AND SAMPLE CONFIGURATION INCLUDING IT

1.2 Sample Configuration of an F²MC-16LX Device

Figure 1.2 shows a sample configuration of an F²MC-16LX device.

Sample Configuration of an F²MC-16LX Device

Figure 1.2 F²MC-16LX Device Sample Configuration

Pin section peripheral to the CPU

Accumulator

ALU

F²MC-16LX CPU

User pin section

Stack pointer

Program

Bank register

counter

Direct page
register

Register bank
pointer

Processor
status

register

Timer/counter

Clock generator

F
²M

C
-1

6L
X

 b
us

ROM
(program area)

A/D converter

RAM (data area)

Interrupt
controller

Serial port

4

MEMO

5

CHAPTER 2 MEMORY SPACE

This chapter describes memory spaces in the F2MC-16LX CPU.

2.1 CPU Memory Space

2.2 Linear Addressing Mode

2.3 Bank Addressing Mode

2.4 Memory Space Divided into Banks and Value in Each Bank Register

2.5 Data Configuration of and Access to Multi-byte Data in Memory

6

CHAPTER 2 MEMORY SPACE

2.1 CPU Memory Space

All data, programs, and I/O areas managed in the F2MC-16LX CPU are allocated in its
16-Mbyte memory space. The CPU can access these resources using an address on
the 24-bit address bus (see Figure 2.1).

An F2MC-16LX addressing mode can be classified either as a linear or bank mode. The
linear mode specifies an entire 24-bit address using a instruction. The bank mode
specifies the 8 higher-order bits of each address using a bank register, and the
remaining 16-bit part using an instruction.

CPU Memory Space

Figure 2.1 Example Relationship between the F2MC-16LX System and Memory Map

F2MC-16LX

FFFFFFH

FF8000H

810000H

800000H

0000C0H

0000B0H

000020H

000000H

Program area

Data area

Interrupt controller

Peripheral circuit

CPU

Interrupt

Data

Program

[Device]
General-purpose port































General-purpose

Peripheral
circuit

port

7

MEMO

8

CHAPTER 2 MEMORY SPACE

2.2 Linear Addressing Mode

The linear addressing mode of the F2MC-16LX specifies an entire 24-bit address using
an instruction.

The linear addressing mode can operate in two different ways. In the first way, an
operand of an instruction specifies directly an entire 24-bit address. In the second
way, the 24-bit low-order portion of a 32-bit general-purpose register is referenced as
an address.

Linear Addressing Mode

The linear addressing mode of the F2MC-16LX specifies an entire 24-bit address using an
instruction. The address mode of the F2MC-16LX is determined according to the specification of
the effective address or operation code (implied) of an instruction.

The linear addressing mode can operate in two different ways. In the first way, an operand of an
instruction specifies directly an entire 24-bit address. In the second way, the 24-bit low-order
portion of a 32-bit general-purpose register is referenced as an address (see Figure 2.2).

9

CHAPTER 2 MEMORY SPACE

Example 1: 24-bit Operand Specification in the Linear Mode

JMPP 123456H

Example 2: Indirect Addressing Based on 32-bit Register in the Linear Mode

MOV A @RL1+7

Figure 2.2 Examples of Generating an Address in the Linear

Previous content of
452D

17452DH

JMPP 123456H

123456H

17program counter plus

Next instruction
Latest content of

345612program counter plus

program bank

program bank

090700H

+7

RL1
(8 high-order bits are ignored.)

XXXX

003A

3A

240906F9

Previous content
of the AL

Latest content
of the AL

10

CHAPTER 2 MEMORY SPACE

2.3 Bank Addressing Mode

The bank addressing mode of the F2MC-16LX specifies the 8 high-order bits of an
address using a bank register that meets use of the address, and the remaining 16 bits
using an instruction.

Bank Address Mode

In the bank addressing mode, the 16-Mbyte memory space is divided into 256 banks of 64-
Kbyte, which are identified using five different bank registers.

Program bank register (PCB)

A 64-Kbyte bank specified using the PCB register is called a program (PC) space. It is
used to hold mainly instruction codes, vector tables, and immediate data.

Data bank register (DTB)

A 64-Kbyte bank specified using the DTB register is called a data (DT) space. It is used to
hold mainly readable/writable data and control/data registers for internal and external
resources.

User stack bank register (USB) and system stack bank register (SSB)

A 64-Kbyte bank specified using the USB or SSB register is called a stack (SP) space. It
is accessed to save register contents when the execution of a push or pop instruction or
interrupt handling is performed. Which to use, the USB or SSB register, is determined
according to the “S” flag in the condition code register.

Additional data bank register (ADB)

A 64-Kbyte bank specified using the ADB register is called a stack (AD) space. It is used
to hold mainly data overflowing from the DT space.

Each instruction is assigned with one of the default spaces listed in Table 2.3a to improve
instruction code efficiency.

Table 2.3a Default Spaces

Default space Addressing

Program space PC-indirect, program access, branch type

Data space @A, addr16, dir, or addressing using @RW0, @RW1, @RW4, or
@RW5

Stack space Addressing using PUSHW, POPW, @RW3, @RW7, or @SP

Additional space Addressing using @RW2 or @RW6

11

CHAPTER 2 MEMORY SPACE

If a space other than a default space is used, a bank space corresponding to a prefix code can
be accessed by specifying the prefix code before the instruction.

Table 2.3b lists bank select prefixes and the memory space selected using each prefix.

Table 2.3b Bank Selection Prefix

The DTB, USB, SSB, and ADB registers are initialized to 00H at a reset. The PCB register is
initialized to FFH at a reset. After a reset, the data, stack, and additional spaces are allocated in
bank 00H (000000H to 00FFFFH), and the program space is allocated in bank FFH (FF0000H to
FFFFFFH).

Bank select prefix Selected space

PCB Program space

DTB Data space

ADB Additional space

SPB
System or user stack space depending on the state of
the stack flag

12

CHAPTER 2 MEMORY SPACE

2.4 Memory Space Divided into Banks and Value in Each Bank
Register

Figure 2.4 shows an example of dividing a memory space ivided into banks and a
value in each register bank.

Memory Space Divided into Banks and Values in Each Register Bank

Figure 2.4 Example of the Physical Addresses of Each Space

P
hy

si
ca

l A
dd

re
ss

FFFFFFH

FF0000H

B3FFFFH

B30000H

92FFFFH

920000H

68FFFFH

680000H

4BFFFFH

4B0000H

000000H

Program space

Additional space

User stack space

Data space

System stack space

FFH : PCB (program bank register)

B3H : ADB (additional data bank register)

92H : USB (user stack bank register)

68H : DTB (data bank register)

4BH : SSB (system stack bank register)

13

MEMO

14

CHAPTER 2 MEMORY SPACE

2.5 Data Configuration of and Access to Multi-byte Data in
Memory

Multi-byte data is written to memory starting at the lowest address. If the multi-byte
data is 32 bits long, the 16 low-order bits are written to memory first.

Multi-byte Data Layout in a Memory Space

Multi-byte data is written to memory starting at the lowest address. If the multi-byte data is 32
bits long, the 16 low-order bits are written to memory first.

If a reset signal is input immediately after the low-order data is written to memory, the high-order
data may not be written. To keep the data in integrity, it is necessary to defer inputting a reset
signal until the high-order data is written.

Figure 2.5a shows the layout of multi-byte data in memory. The 8 lowest-order bits are placed at
address n, the next 8 lowest-order bits are placed at address n + 1, and the next 8 lowest-order
bits are placed at address n + 2, and so on.

Figure 2.5a Multi-byte Data Layout in Memory

H

Address n

L

01010101

MSB LSB

11001100 11111111 00010100

01010101

11001100

11111111

00010100

15

CHAPTER 2 MEMORY SPACE

Access to Multi-byte Data

When multi-byte data is accessed, it is assumed that all parts of the multi-byte data are within a
single bank. To put it another way, an instruction accessing multi-byte data assumes that an
address that follows address FFFFH is 0000H in the same bank as for FFFFH.

Figure 2.5b shows an example of an instruction accessing multi-byte data.

Figure 2.5b Execution Example of an Instruction (MOVPW A, 080FFFFH) Accessing Multi-byte Data

Higher address

80FFFFH

800000H

AL before execution

Lower address

?? ??

AL after execution 23H 01H

·
·
·

23H

01H

16

MEMO

17

CHAPTER 3 DEDICATED REGISTERS

The registers of the F2MC-16LX can be grouped into two major categories: Dedicated
registers in the CPU and general-purpose registers allocated in memory.

This chapter describes the F2MC-16LX dedicated registers. These registers are the
dedicated hardware in the CPU. Their use is limited because of the architecture of the
CPU.

3.1 F2MC-16LX Dedicated Register Types

3.2 Accumulator (A)

3.3 User Stack Pointer (USP) and System Stack Pointer (SSP)

3.4 Processor Status (PS)

3.5 Program Counter (PC)

3.6 Direct Page Register (DPR)

3.7 Bank Registers

18

CHAPTER 3 DEDICATED REGISTERS

3.1 F2MC-16LX Dedicated Register Types

There are 11 dedicated registers in the F2MC-16LX

• Accumulator (A=AH:AL) • User stack pointer (USP)

• System stack pointer (SSP) • Processor status (PS)

• Program counter (PC) • Program bank register (PCB)

• Data bank register (DTB) • User stack bank register (USB)

• System stack bank register (SSB) • Additional data bank register (ADB)

• Direct page register (DPR)

F2MC-16LX Dedicated Register Types

Accumulator (A=AH:AL)

This is a set of two 16-bit accumulators. It can be used as a single 32-bit accumulator.

User stack pointer (USP)

This is a 16-bit pointer indicating a user stack area.

System stack pointer (SSP)

This is a 16-bit pointer indicating a system stack area.

Processor status (PS)

This is a 16-bit register indicating the status of the system.

Program counter (PC)

This is a 16-bit register to hold an address where the next instruction to be executed is.

Program bank register (PCB)

This is an 8-bit register indicating the program space.

Data bank register (DTB)

This is an 8-bit register indicating the data space.

User stack bank register (USB)

This is an 8-bit register indicating the user stack space.

System stack bank register (SSB)

This is an 8-bit register indicating the system stack space.

Additional data bank register (ADB)

This is an 8-bit register indicating the additional space.

Direct page register (DPR)

This is an 8-bit register indicating the direct page.

Figure 3.1 shows an outline of the dedicated registers.

19

CHAPTER 3 DEDICATED REGISTERS

Figure 3.1 Dedicated Registers

User stack pointer

AH

USP

AccumulatorAL

System stack pointerSSP
Processor statusPS
Program counterPC

Direct page registerDPR

Program bank registerPCB
Data bank registerDTB
User stack bank registerUSB
System stack bank registerSSB
Additional data bank registerADB

32 bits
16 bits

8 bits

20

CHAPTER 3 DEDICATED REGISTERS

3.2 Accumulator (A)

The accumulator (A) consists of two 16bits length operation registers (AH and AL),
used for temporary storage of the results of an operation or of data to be transferred.

Accumulator (A)

The accumulator (A) consists of two 16bits length operation registers (AH and AL), used for
temporary storage of the results of an operation or of data to be transferred. To process 32-bit
data, the AH and AL registers are concatenated (see Figure 3.2a). To process 16-bit data (used
in word-unit processing) or 8-bit data (used in byte-unit processing), only the AL register is used
(see Figure 3.2b). Various types of arithmetic and logical operations can be performed between
data in the accumulator (A) and data in memory or a register (such as Ri, RWi, or RLi). Similarly
to the F2MC-8, the F2MC-16LX automatically transfers data from the AL register to the AH
register, if it receives new data at the AL register and the new data is not larger than a word
(data preservation function). Use of this data preservation function and a function to perform
arithmetic and logical operations between the AL and AH registers makes various types of
processing more efficient (see Figure 3.2b).

If data transferred to the AL register is not larger than a byte, the data is sign- or zero-extended
to 16 bits when it is stored in the AL register. The data in the AL register can be handled as
either a word or a byte. If a byte-unit arithmetic operation is performed on the AL register, the
upper 8 bits of data that have been previously set in the AL register are ignored and reset to all
“0s”.

MOVL A, @RW1+6

Figure 3.2a Example of Transferring 32-bit Data

+6

MSB

A61540H

A6153EH

RW1

8FH 74H

2BH 52H

15H 38H

LSB

A6HDTB

AH AL

Previous content
of the A register

Latest content
of the A register 8F74H 2B52H

XXXXH XXXXH

21

CHAPTER 3 DEDICATED REGISTERS

MOVW A, @RW1+6

Figure 3.2b Example of Transferring Data between the AL and AH Registers by Means of the
Data Presentation Function

+6

MSB

A61540H

A6153EH

RW1

XXXXH 1234H 8FH 74H

2BH 52H

15H 38H

LSB

A6HDTB

1234H 2B52H

AH AL

Previous content
of the A register

Latest content
of the A register

22

CHAPTER 3 DEDICATED REGISTERS

3.3 User Stack Pointer (USP) and System Stack Pointer (SSP)

Both the user stack pointer (USP) and system stack pointer (SSP) are 16-bit registers.
They are used to indicate a data save address or return address when a push, pop
instruction, or subroutine is executed.

Basically, a value to be set in a stack pointer must be an even address.

User Stack Pointer (USP) and System Stack Pointer (SSP)

Both the user stack pointer (USP) and system stack pointer (SSP) are a 16-bit register. They
are used to indicate a data save address or return address when a push, pop instruction, or
subroutine is executed. The USP and SSP registers are used by stack manipulation instructions
in the same manner. If the “S” flag in the condition code register (CCR) in the processor status
(PS) register is “0”, the USP register is active. If the “S” flag is “1”, the SSP register is active
(see Figure 3.3). Because the “S” flag becomes “1” when an interrupt is accepted, the SSP
register is used to indicate a memory area to save register contents at an interrupt. The SSP
register is used by an interrupt routine for stack manipulation, while the USP register is used by
non-interrupt handling routines for stack manipulation. If it is unnecessary to divide the stack
space, only the SSP register should be used.

For the SSP register, the 8 high-order bits of an address used for stack manipulation are
indicated by the system stack bank register (SSB). For the USP register, they are indicted by
the user stack bank register (USB).

23

CHAPTER 3 DEDICATED REGISTERS

Example 1: PUSHW A executed when the “S” flag is “0”

Example 2: PUSHW A executed when the “S” flag is “1”

Figure 3.3 Relationships between Stack Manipulation Instruction and Stack Pointer

Before execution

MSB LSB

AL A624H C6HUSB F328HUSP XX XX

“S” flag 0 56HSSB 1234HSSP

After execution AL A624H C6HUSB F326HUSP

A6H 24H“S” flag 0 56HSSB 1234HSSP

 The user stack is used
because the “S” flag is “0”.

C6F326H

C6F326H

Before execution AL A624H C6HUSB F328HUSP XX XX

“S” flag 1 56HSSB 1234HSSP

After execution AL A624H C6HUSB F328HUSP A6H 24H

“S” flag 1 56HSSB 1232HSSP The system stack is used
because the “S” flag is “1”.

561232H

561232H

24

CHAPTER 3 DEDICATED REGISTERS

3.4 Processor Status (PS)

The processor status (PS) register consists of bits for controlling the CPU and those
for indicating the status of the CPU. The PS register is divided into the following three
registers.

• Interrupt level mask register (ILM)

• Register bank pointer (RP)

• Condition code register (CCR)

Processor Status (PS)

The processor status (PS) register consists of bits for controlling the CPU and those for
indicating the status of the CPU.

• Interrupt level mask register (ILM): Indicates the level of an interrupt to be accepted.

• Register bank pointer (RP): Indicates the start address of a register bank.

• Condition code register (CCR): Consists of variouos flags that are set or reset during
instruction execution or at an interrupt occurrence.

Figure 3.4 shows the structure of the processor status (PS) register.

Figure 3.4 Processor Status (PS) Register Structure

PS ILM RP CCR

15 8 7 013 12

3.4 Processor Status (PS)

25

3.4.1 Interrupt Level Mask Register (ILM)

Shown below is a configuration diagram of the interrupt level mask register (ILM).

Interrupt Level Mask Register (ILM)

The interrupt level mask register (ILM) consists of 3 bits. It indicates the levels of interrupts
acceptable to the CPU. If an interrupt whose level is higher than the level indicated using these
3 bits, it is accepted. Interrupt level 0 is the highest, and interrupt level 7 is the lowest (see Table
3.4.1). In other words, for an interrupt to be accepted, its interrupt level number must be smaller
than the number held in the ILM register. When an interrupt is accepted, its interrupt level is set
in the ILM register, thus prohibiting interrupts on lower levels from being accepted. Because the
ILM register is initialized to all “0s” at a reset, the highest interrupt level is specified in the ILM
register. It is possible to transfer 8-bit immediate data to the ILM register, but only the 3 low-
order bits of the data can be referenced.

ILM ILM2 ILM1 ILM0

(Initial value)→ 0 0 0

Table 3.4.1 Interrupt Levels Indicated in the Interrupt Level Mask Register (ILM)

ILM2 ILM1 ILM0 Level value Levels of acceptable interrupts

0 0 0 0 Interrupt disabled

0 0 1 1 0

0 1 0 2 1 and below

0 1 1 3 2 and below

1 0 0 4 3 and below

1 0 1 5 4 and below

1 1 0 6 5 and below

1 1 1 7 6 and below

26

3.4 Processor Status (PS)

3.4.2 Register bank pointer (RP)

Shown below is a configuration diagram of the register bank pointer (RP).

Register Bank Pointer (RP)

The register bank pointer (RP) indicates the address of an internal RAM area where the general-
purpose registers of the F2MC-16LX are. The start memory address of a register bank currently
in use is represented using the following conversion expression: [000180H + RP × 10H]. The RP
register consists of 5 bits. It can hold any value between 00H and 1FH. So, the register bank
can be allocated at memory locations in a range between 000180H and 00037FH. If the internal
RAM area used as an external area, however, it cannot be used as general-purpose registers
even if the register bank is within that range. It is possible to transfer 8-bit immediate data to the
RP register, but only the 5 low-order bits of the data can be referenced.

RP B4 B3 B2 B1 B0

(Initial value)→ 0 0 0 0 0

3.4 Processor Status (PS)

27

3.4.3 Condition Code Register (CCR)

Shown below is a configuration diagram of the condition code register (CCR).

Condition Code Register (CCR)

• I (Interrupt enable flag): If the “I” flag is “1”, all non-software interrupts are acceptable.
If the flag is “0”, they are disabled.

• S (Stack flag): If the “S” flag is “0”, the user stack pointer (USP) is active as a pointer
for stack manipulation. If the flag is “1”, the system stack pointer (SSP)
is active. The flag is set at a reset and when an interrupt is accepted.

• T (Sticky bit flag): If at least one bit read from the “C” flag is “1” when a logical shift right
instruction or an arithmetic shift right instruction is executed, this flag
becomes “1”. Otherwise, the flag becomes “0”. The flag becomes
“0” also if the amount of shifting is zero.

• N (Negative flag): If the most significant bit of an arithmetic or logical operation result is
“1”, this flag is cleared to“0”.

• Z (Zero flag): If the result of an arithmetic or logical operation is all “0s”, this flag is set.
Otherwise, it is cleared.

• V (Overflow flag): This flag is set, if a digit overflow occurs in a signed value generated
as the result of an arithmetic or logical operation. Otherwise, the flag
is cleared.

• C (Carry flag): This flag is set, if an arithmetic or logical operation causes a carry from
or to the most-significant bit. Otherwise, the flag is cleared.

7 6 5 4 3 2 1 0

CCR – I S T N Z V C

(Initial value)→ 0 1 – – – – – Note: –: Undefined

28

CHAPTER 3 DEDICATED REGISTERS

3.5 Program Counter (PC)

The program counter (PC) consists of 16 bits. It indicates the 16 low-order bits of a
memory address where the next instruction to be executed by the CPU is.

Program Counter (PC)

The program counter (PC) consists of 16 bits. It indicates the 16 low-order bits of a memory
address where the next instruction to be executed by the CPU is (see Figure 3.5). The 8 high-
order bits of the memory address are indicated in the program bank register (PCB). The content
of the PC register is updated, when a conditional branch or subroutine call instruction is
executed, upon an interrupt occurrence, or at a reset. The PC register is used also as a base
pointer for reading an operand.

Figure 3.5 Program Counter (PC)

PCB

FEABCDH
Next instruction

PC ABCDHFEH

to be executed

   

29

CHAPTER 3 DEDICATED REGISTERS

3.6 Direct Page Register (DPR)

The direct page register (DPR) specifies bits 8 to 15 (addr 8 to addr 15) of an operand
address in an instruction in direct addressing mode.

Direct Page Register (DPR)

The direct page register (DPR) specifies bits 8 to 15 (addr 8 to addr 15) of an operand address
in an instruction in direct addressing mode, as shown in Figure 3.6. The DPR register is 8 bits
long. It is initialized to 01H at a reset. It can be read- and write-accessed by an instruction.

Figure 3.6 Physical Address Specified in Direct Addressing Mode

DTB register

MSB

24-bit

LSB

physical address

DPR register Direct address in an instruction

αααααααα ββββββββ γγγγγγγγ

ααααααααββββββββγγγγγγγγ

        

30

CHAPTER 3 DEDICATED REGISTERS

3.7 Bank Registers

The following 5 bank registers are available in the F2MC-16LX.

• Program bank register (PCB)

• Data bank register (DTB)

• User stack bank register (USB)

• System stack bank register (SSB)

• Additional data bank register (ADB)

These registers indicate memory banks for the program, data, user stack, system
stack, and additional spaces, respectively.

Bank Registers

All of these bank registers are 1 byte length. At a reset, the PCB register is initialized to 0FFH,
and the other registers, to 00H. The PCB register can be read-accessed, but not write-accessed.
The other bank registers can be both read- and write-accessed. The content of the PCB register
is updated, when a JMPP, CALLP, RETP, or RETI instruction for a branch anywhere in the 16-
Mbyte space is executed or an interrupt occurs. See Chapter 2, “Memory Space” for
descriptions about the operation of each register.

31

CHAPTER 4 GENERAL-PURPOSE REGISTERS

The registers of the F2MC-16LX can be grouped into two major categories: dedicated
registers in the CPU and general-purpose registers allocated in memory.

This chapter describes the F2MC-16LX general-purpose registers. These registers are
allocated in a RAM address space of the CPU. Similarly to the dedicated registers, the
general-purpose registers can be accessed without specifying their address. However,
the user can specify the purpose for which they are used in the same manner as for
ordinary memory.

4.1 Register Banks in RAM

4.2 Calling General-purpose Registers in RAM

32

CHAPTER 4 GENERAL-PURPOSE REGISTERS

4.1 Register Banks in RAM

Each register bank consists of 8 words (16 bytes). They can be used as general-
purpose registers (byte registers R0 to R7, word registers RW0 to RW7, and long word
registers RL0 to RL3) for performing various types of operations and specifying
pointers. RL0 to RL3 can be used also as a linear pointer to gain direct access to all
spaces in memory.

Register Banks in RAM

Table 4.1 lists the function of each register, and Figure 4.1 shows relationships between the
registers.

Figure 4.1 Relationship between Registers

Table 4.1 Functions of Each Register

Register name Function

R0 to R7
Used to hold an operand in various types of instructions.
Note: R0 is also used as a barrel shift counter or normalizing
instruction counter.

RW0 to RW7
Used to hold a pointer.
Used to hold an operand in various types of instructions.
Note: RW0 is used also as a string instruction counter.

RL0 to RL3
Used to hold a long pointer.
Used to hold an operand in various types of instructions.

RW0
RL0

RW1

RW2
RL1

RW3

R0
RW4

RL2
R1

R2
RW5

R3

R4
RW6

RL3
R5

R6
RW7

R7

33

CHAPTER 4 GENERAL-PURPOSE REGISTERS

4.2 Calling General-purpose Registers in RAM

For general-purpose registers of the F2MC-16LX, the register bank pointer (RP) is used
to specify where in internal RAM between 000180H and 00037FH the register bank
currently in use is allocated.

Calling General-purpose Registers in RAM

The general-purpose registers of the F2MC-16LX are allocated in internal RAM between
000180H and 00037FH (in maximum configuration). The register bank pointer (RP) is used to
indicate where in internal RAM between 000180H and 00037FH the register bank currently in use
is allocated. Each bank contains the following 3 different registers. These registers are not
independent of one another. Instead, they have the relationships shown in Figure 4.2.

• R0 to R7: 8-bit general-purpose registers

• RW0 to RW7: 16-bit general-purpose registers

• RL0 to RL3: 32-bit general-purpose registers

Figure 4.2 General-purpose Registers

The relationships among the high- and low-order bytes in word registers RW4 to RW7 and byte
registers R0 to R7 are represented using the following expression:

RW (i + 4) = R (i × 2 + 1) × 256 + R (i × 2) [where i = 0 to 3]

The relationships among the high- and low-order bytes in long registers RL0 to RL3 and word
registers RW0 to RW7 are represented using the following expression:

RL (i) = RW (i × 2 + 1) × 65536 + RW (i × 2) [where i = 0 to 3]

For example, if the data in R1 and the data in R0 are arranged as high- and low-order bytes,
respectively, the resulting data equals the data (2 bytes) in RW4.

Start address of a Lower order

MSB LSB

RW4

RL0
RW0
RW1
RW2

R1 R0
R3 R2
R5 R4
R7 R6

16 bits

Higher order

RW5
RW6
RW7





















RL1

RL2

RL3

general-purpose
register

000180H + RP × 10H

34

MEMO

35

CHAPTER 5 PREFIX CODES

The function of an instruction can be modified by prefixing it with a code, or prefix
code. The following 3 types of prefix codes are available.

• Bank select prefix

• Common register bank prefix

• Flag change inhibit prefix code

This chapter describes these prefixes.

5.1 Bank Select Prefix

5.2 Common Register Bank Prefix (CMR)

5.3 Flag Change Inhibit Prefix Code (NCC)

5.4 Constraints Related to the Prefix Codes

36

CHAPTER 5 PREFIX CODES

5.1 Bank Select Prefix

Placing a bank select prefix before an instruction enables selecting the memory space
accessed by the instruction regardless of what the current addressing mode is.

Bank Select Prefix

The memory space of data to be accessed is determined according to the addressing mode.
Placing a bank select prefix before an instruction enables selecting the memory space accessed
by the instruction regardless of what the current addressing mode is. Table 5.1 lists the bank
select prefixes and the memory pace selected according to each bank select prefix.

Be careful when using the following instructions.

Transfer instructions (I/O access)

MOV A,io MOV io, A MOVX A,io MOVW A io
MOVW io,A MOV io,#imm8 MOVW io,#imm16

These instructions access the I/O space regardless of whether there is a prefix before
them.

Branch instruction

RETI

The system stack bank (SSB) is used regardless of whether there is a prefix before the
branch instruction.

Bit manipulation instructions (I/O access)

MOVB A,io:bp MOVB io:bp,A SETB io:bp

CLRB io:bp BBC io:bp,rel BBS io:bp,rel

WBTC WBTS

The I/O space is accessed regardless of whether there is a prefix before those
instructions.

Table 5.1 Bank Select Prefixes

Bank select prefix Memory space to be selected

PCB Program counter space

DTB Data space

ADB Additional space

SPB
System or user stack space depending on the
state of the stack flag

37

CHAPTER 5 PREFIX CODES

String manipulation instructions

MOVS MOVSW SCEQ SCWEQ FILS FILSW

A bank register specified in the operand is used regardless of whether there is a prefix
before these instructions.

Other types of control instructions (stack manipulation)

PUSHW POPW

The system stack bank (SSB) or user stack bank (USB) is used depending on the state of
the “S” flag, regardless of whether there is a prefix before these instructions.

POPW PS

In the following cases, the prefix of an instruction affects not only that instruction but also
an instruction that follows it.

Other types of control instructions (flag change)

AND CCR,#imm8 OR CCR,#imm8

The operations of these instructions are performed normally. The prefix of each of these
instructions affects not only the instructions but also an instruction that follows them.

Another type of control instruction (interrupt control)

MOV ILM,#imm8

The operation of the instruction is performed normally. The prefix of the instruction affects
not only that instruction but also an instruction that follows it.

38

CHAPTER 5 PREFIX CODES

5.2 Common Register Bank Prefix (CMR)

Placing a common register bank prefix (CMR) before an instruction accessing a
register bank enables specifying that the instruction is to access only the registers in a
common bank (register bank selected when RP = 0) allocated between 000180H and
00018FH, regardless of what the current value of the register bank pointer (RP) is.

Common Register Bank Prefix (CMR)

To make data exchange among tasks easier, it is necessary to use a method that can access a
certain specified register bank relatively easily no matter what value the RP register holds. To
meet this requirement, the F2MC-16LX has a register bank that can be used by all tasks in
common. It is called a common bank. The common bank is allocated in memory between
address 000180H and 00018FH. It is selected when the RP register contains a value of “0”.

Placing the common register bank prefix (CMR) before an instruction accessing a register bank
enables specifying that the instruction is to access only the registers in a common bank (register
bank selected when RP = 0) allocated between 000180H and 00018FH, regardless of what the
current value of the register bank pointer (RP) is.

Be careful when using the following instructions.

String instructions

MOVS NOVSW SCEQ FILS FILSW

If an interrupt is requested during execution of a string manipulation instruction attached
with a prefix code, the prefix becomes ineffective for the string manipulation instruction
after a return is made from the interrupt handling routine, possibly resulting in a
malfunction. Do not place the CMR prefix before these string manipulation instructions.

Other types of control instructions (flag change)

AND CCR,#imm8 OR CCR,#imm8 POPW PS

The operations of these instructions are performed normally. The prefix of each of these
instructions affects not only the instructions but also an instruction that follows them.

MOV ILM,#imm8

The operation of the instruction is performed normally. The prefix of the instruction affects
not only that instruction but also an instruction that follows it.

39

CHAPTER 5 PREFIX CODES

5.3 Flag Change Inhibit Prefix Code (NCC)

Placing the flag change inhibit prefix code (NCC) before an instruction inhibits flags
from changing during execution of the instruction.

Flag Change Inhibit Prefix Code (NCC)

The flag change inhibit prefix code (NCC) is used to suppress undesired changes to flags.
Placing the NCC prefix before an instruction inhibits flags from changing during execution of the
instruction.

Be careful when using the following instructions.

Branch instructions

INT #vct8 INT9 INT addr16

INTP addr24 RETI

These instructions change the flags in the condition code register (CCR) regardless of
whether there is a prefix before them.

String instructions

MOVE MOVSW SCEQ SCWEQ FILS FISW

If an interrupt is requested during execution of a string manipulation instruction attached
with a prefix code, the prefix becomes ineffective for the string manipulation instruction
after a return is made from the interrupt handling routine, possibly resulting in a
malfunction. Do not place the NCC prefix before these string manipulation instructions.

Another type of control instruction (task switching)

JCTX @A

This instruction changes the flags in the CCR register regardless of whether there is a
prefix before it.

Other types of control instructions (flag change)

AND CCR,#imm8 OR CCR,#imm8 POPW PS

These instructions change the flags in the CCR register regardless of whether there is a
prefix before them. The prefix of each of these instructions affects not only the
instructions but also an instruction that follows them.

Another type of control instruction (interrupt control)

MOV ILM,#imm8

The operation of the instruction is performed normally. The prefix of the instruction affects
not only that instruction but also an instruction that follows it.

40

CHAPTER 5 PREFIX CODES

5.4 Constraints Related to the Prefix Codes

If a prefix code is placed before an instruction where interrupt and hold requests are
inhibited, the effect of the prefix code lasts until an instruction where neither an
interrupt nor hold request is inhibited appears for the first time, as shown in Figure
5.4b.

If a prefix is followed by conflicting prefix codes, the last one is valid.

Relationships between Instructions Rejecting Interrupt Requests and Prefix Codes

The following 10 instructions/prefix codes reject interrupt and hold requests.

• MOV ILM,#imm8 • AND CCR,#imm8

• OR CCR,#imm8 • POPW PS

• PCB • ADB

• NCC • DTB

• SPB • CMR

If an interrupt or hold request is issued during execution of any of the above instructions, the
request is accepted only after any instruction not listed above appears for the first time after that
instruction and is executed, as shown in Figure 5.4a.

Figure 5.4a Instructions Rejecting Interrupt and Hold Requests

If a prefix code is placed before an instruction rejecting interrupt and hold requests, its effect
lasts until an instruction other than instructions rejecting interrupt and hold requests appears for
the first time after the prefix code and is executed, as shown in Figure 5.4b.

Figure 5.4b Instructions Rejecting Interrupt and Hold Requests and Prefix Code

Instructions rejecting interrupt and hold requests

(a)

Interrupt request issued Interrupt accepted

(a) Ordinary instruction
• • • • • • • • • • •

          

Instructions rejecting interrupt and hold requests

ADD A,01H• • • •

          

MOV A,FFH

CCR: XXX10XX

The NCC protects the

NCC MOV ILM,#imm8
CCR: XXX10XX

CCR from changing.

  

41

CHAPTER 5 PREFIX CODES

If Two or More Prefix Codes Appear in Succession

If a prefix is followed by conflicting prefix codes, the last one is valid (see Figure 5.4c).

Figure 5.4c Consecutive Prefix Codes

The term “conflicting prefix codes” refers to PCB, ADB, DTB, and SPB.

Prefix codes

ADB• • • • • • • • •

        

DTB PCB ADD A,01H

The PCB prefix code is valid for this instruction.

42

MEMO

43

CHAPTER 6 INTERRUPT HANDLING

This chapter describes the interrupt function and operation of F2MC-16LX.

6.1 Interrupt Handling

6.2 Hardware Interrupt Operation Flow

6.3 Interrupt Handling Flowchart and Saving the Contents of Registers

6.4 Interrupt Vectors

6.5 Extended Intelligent I/O Service

6.6 Interrupt Control Register (ICR)

6.7 Meanings of the Bits of Interrupt Control Register (ICR)

6.8 Extended Intelligent I/O Service Descriptor (ISD)

6.9 Registers of Extended Intelligent I/O Service Descriptor

6.10 Exception Processing

44

CHAPTER 6 INTERRUPT HANDLING

6.1 Interrupt Handling

In F2MC-16LX series, interrupt handling or extended intelligent I/O service is activated
by the interrupt request from an internal resource. For interrupt handling, the
processing appropriate to the interrupt request is performed by the interrupt handling
program. For extended intelligent I/O service, the data transfer between the requesting
internal resource and the memory is automatically performed. In addition, a function is
provided to stop the execution of the extended intelligent I/O service by the request
from the internal resource (such as an built-in peripheral circuit).

Interrupt Handling

To permit an internal resource to make a hardware interrupt request to the F2MC-16LX CPU, an
interrupt request flag and an interrupt enable flag are required for that resource. The interrupt
request flag is set by the occurrence of an event specific to the internal resource. When the
interrupt request flag indicates the request being made and the interrupt enable flag is set to the
enabled state, a hardware interrupt request is issued from the internal resource.

In the case of the internal resource that requires the activation of the extended intelligent I/O
service accompanied by the occurrence of a hardware interrupt request, an extended intelligent
i/o service enable (ISE) flag is provided in the interrupt control register (ICR) in the interrupt
controller associated with that resource.

The occurrence of an interrupt request with the ISE flag set to “1” activates the extended
intelligent I/O service. If only normal hardware interrupt requests are intended, set the ISE flag
to “0”.

For interrupt requests by the execution of the INT instruction, which are software interrupts, no
interrupt request and enable flags are applied. Whenever the INT instruction is executed, an
interrupt request occurs.

Any interrupt level of hardware interrupt request can be assigned to a given group regarding
interrupt request. Interrupt levels are specified by the interrupt level setting bits (IL0, IL1, and
IL2) in the ICR register in the interrupt controller. It is possible to specify eight interrupt level
settings 0 to 7. Definition of the interrupt levels is such that 0 is the highest and 6 the lowest.
From a group set to interrupt level 7, no interrupt requests can be made. Hardware interrupt
requests are maskable (enabled/disabled) by the I flag in the condition code register (CCR) of
the processor status (PS) and the ILM register (ILM0, ILM1, and ILM2).

When an unmasked interrupt request occurs, the CPU takes the following actions:

45

CHAPTER 6 INTERRUPT HANDLING

(1) Saves the data (12 bytes) held by the following registers into the memory area indicated by
the system stack bank (SSB) register and the system stack pointer (SSP).

• Processor status (PS)

• Program counter (PC)

• Program bank register (PCB)

• Data bank register (DTB)

• Additional bank register (ADB)

• Direct page register (DPR)

• Accumulator (A)

(2) Reads the interrupt vector in 3 bytes to PC and PCB.

(3) Updates the ILM register in the PS to the level setting value of the accepted interrupt request
and sets the S flag in the CCR register.

(4) Initiates the instruction execution, starting with the address indicated by the interrupt vector.

For the INT instruction, the ILM register is not updated and the I flag in the CCR register is
cleared. Subsequent interrupt requests are put to the pending state.

As a special case, hardware interrupt requests cannot be accepted during writing into an I/O
area. This is intended to avoid the CPU malfunction, which might otherwise be caused by the
occurrence of an interrupt request while the related data in the interrupt control registers for the
resources are being rewritten.

46

CHAPTER 6 INTERRUPT HANDLING

6.2 Hardware Interrupt Operation Flow

Figure 6.2 shows the operation flow from the occurrence of a hardware interrupt
request until the interrupt request has been cleared and removed from within the
interrupt handling program.

Hardware Interrupt Operation Flow

(1) An interrupt source occurs within the peripheral.

(2) If the interrupt enable bit within the peripheral is referenced and it indicates the interrupt
enabled state, an interrupt request is issued from the peripheral to the interrupt controller.

(3) The interrupt controller that has received that interrupt request determines the priority
between the requests made at the same time and transfers the interrupt level
corresponding to the appropriate interrupt to the CPU.

(4) The CPU compares the interrupt level requested by the interrupt controller with the IL bit
held in the processor status register.

(5) Only if the result of this comparison is that the interrupt level priority is higher than the
current interrupt handling level, the CPU checks the content of the I flag in the same
processor status register.

(6) Only if the result of the check in (5) is that the I flag is set in the interrupt enabled state,
the CPU sets the content of the IL bit to the requested level. Upon the completion of the
ongoing instruction execution, the CPU passes the control to the interrupt handling
routine to initiate the handling of that interrupt.

(7) When the software within the user’s interrupt handling routine clears the occurred
interrupt cause as mentioned in (1), this interrupt request process is terminated.

Figure 6.2 From the Hardware Interrupt Occurrence to its Clearance

47

MEMO

48

CHAPTER 6 INTERRUPT HANDLING

6.3 Interrupt Handling Flowchart and Saving the Contents of
Registers

Figure 6.3a shows the interrupt handling flowchart and Figure 6.3b shows how the
contents of the registers are saved with interrupt handling.

Interrupt Handling Flowchart

Figure 6.3a Interrupt Handling Flowchart

I: Flag in the CCR
ILM: Level register that holds a level value,

referenced by the CPU
IF: Interrupt request by an internal resource
IE: Interrupt enable flag for an internal resource
ISE: EI2OS enable flag
IL: Interrupt request level of an internal resource
S: Flag in the CCR

I & IF & IE=1

NO

Fetch and decode next

Save the contents of PS, PC,

AND
ILM > IL

YES

NO
ISE=1

YES

NO

INT instruction
YES

instruction

NO

YES

Update PC

Execute normal
instruction

Perform extended intelligent
I/O service processing

S ← 1
Fetch an interrupt vector

PCB, DTB, ADB, DPR, and A
into the SSP stack. Then, ILM=IL.

String-
processing

completed

Save the contents of PS,
PC, PCB, DTB, ADB, DPR,
and A into the SSP stack.
Then, I = 0 and ILM = IL.

instruction repetition

49

CHAPTER 6 INTERRUPT HANDLING

Figure 6.3b How the Contents of the Registers are Saved with Interrupt Handling

MSB
H

L

AH

LSB

← SSP (a value of SSP before the interrupt occurrence)

← SSP (a value of SSP after the interrupt occurrence)

AL
DPR ADB
DTB PCB

PC
PS

Word (16 bits)

50

CHAPTER 6 INTERRUPT HANDLING

6.4 Interrupt Vectors

Interrupt vectors are stored at addresses FFFC00H to FFFFFFH as shown in Table 6.4.
Interrupt vectors share the same area for both hardware interrupt and software
interrupt.

Interrupt Vectors

*1: Because the vector area for the CALLV instruction is also used as the vector area for INT #vct8 (#0 to
#7) when the PCB is FFH, care should be taken in using a vector for the CALLV instruction.

*2: It becomes a reset vector.

*3: It becomes a vector for exception processing.

Table 6.4 Interrupt Vectors

Interrupt
request

Vector address
L

Vector address
H

Vector address
bank

Mode register

INT0 *1 FFFFFCH FFFFFDH FFFFFEH Not used

INT1 *1 FFFFF8H FFFFF9H FFFFFAH Not used

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

INT7 *1 FFFFE0H FFFFE1H FFFFE2H Not used

INT8 *2 FFFFDCH FFFFDDH FFFFDEH FFFFDFH

INT9 FFFFD8H FFFFD9H FFFFDAH Not used

INT10 *3 FFFFD4H FFFFD5H FFFFD6H Not used

INT11 FFFFD0H FFFFD1H FFFFD2H Not used

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

INT 254 FFFC04H FFFC05H FFFC06H Not used

INT 254 FFFC00H FFFC01H FFFC02H Not used

51

MEMO

52

CHAPTER 6 INTERRUPT HANDLING

6.5 Extended Intelligent I/O Service

The extended intelligent I/O service (EI2OS) is a function for automatic data transfer
between I/O and the memory. It enables the data transfer from/to I/O on a direct
memory access (DMA) basis, though this was performed by the interrupt handling
program before.

Overview of Extended Intelligent I/O Service

The extended intelligent I/O service is one type of hardware interrupt. This service achieves
automatic data transfer between I/O and the memory, enabling the data transfer from/to I/O on a
DMA basis, though this was formerly performed by the interrupt handling program. As compared
with the method applied before as part of interrupt handling, the following advantages are added:

• Because the part of the program coded for data transfer is no longer needed, the program
size is reduced.

• It is unnecessary to save the contents of registers because the internal registers are not
used for data transfer, thus enhancing the transfer rate.

• Because the data transfer can be stopped according to the I/O status, unnecessary data
transfer is eliminated.

• Buffer addresses can be selected without the need of increments and update.

• I/O register addresses can be selected without the need of increments and update.

When the extended intelligent I/O service is terminated, it sets the end condition before the
automatic branch to the interrupt handling routine. This allows the user to know what the end
condition was.

Structure of Extended Intelligent I/O Service

There are four functional entities below, which are related to the extended intelligent I/O service:

• Internal resource: Interrupt enable bit and interrupt request bit: Controls an interrupt
request from a resource.

• Interrupt controller: ICR: Assigns an interrupt level to each interrupt request, determines
the priority between the interrupts requested at the same time, and selects the operation
of EI2OS.

• CPU: I, ILM: Compares the requested interrupt level with the current level and verifies
the interrupt enabled state.

• RAM: Descriptor: Describes the transfer information of EI2OS.

Figure 6.5 shows the overview of extended intelligent I/O service.

53

CHAPTER 6 INTERRUPT HANDLING

Figure 6.5 Overview of Extended Intelligent I/O Service

by IOA

CPU

by BAP

Memory space

by ICS

by DCT

I/O register

Interrupt request

Interrupt controller

(1) I/O requests data transfer.
(2) Interrupt controller selects the descriptor.
(3) Reads the transfer origin and destination from the descriptor.
(4) Data transfer between the I/O and the memory is performed.

I/O register

ISD

Buffer

Peripheral

(4)

(2)

(1)

Interrupt control
register

(3)

(3)

Note: Area that can be specified by the I/O address pointer (IOA) is 000000H to 00FFFFH.

Area that can be specified by the buffer address pointer (BAP) is 000000H to 00FFFFH.
The maximum transfer count that can be specified by the data counter (DCT) is 65,536.

54

6.5 Extended Intelligent I/O Service

6.5.1 Flowchart of extended intelligent I/O service operation

Figure 6.5.1 shows the flowchart of extended intelligent I/O service operation.

Flowchart of Extended Intelligent I/O Service Operation

Figure 6.5.1 Extended Intelligent I/O Service Operation Flowchart

Interrupt request issued

NO
ISE = 1

YES

Read ISD/ISCS

NO

BAP: Buffer address pointer
IOA: IO address pointer
ISD: EI2OS descriptor
ISCS: EI2OS status
DCT: Data counter
ISE: EI2OS enable bit
S1, S0: EI2OS end status

from an internal resource

Interrupt sequence

YESEnd request
from the
resource

SE = 1

YES
DIR = 1

NO

Data indicated by IOA
↓ (Data transfer)

Memory indicated by BAP

Data indicated by BAP
↓ (Data transfer)

Data indicated by IOA

YES
IF = 0

NO Update IOA

Decrement DCT

Update BAP

The updated value
depends on BW.

Set S1 and S0 to “11”Set S1 and S0 to “00”

Clear the interrupt
request from the
resource

CPU operation recovery Interrupt sequence

Set S1 and S0 to “01”

Clearing ISE to “0”

YES
DCT = 00

NO

The updated value
depends on BW.

YES
BF = 0

NO

(−1)

6.5 Extended Intelligent I/O Service

55

6.5.2 Flowchart of extended intelligent I/O service application
procedure

Figure 6.5.2 shows the flowchart of extended intelligent I/O service (EI2OS) application
procedure

Flowchart of Extended Intelligent I/O Service Application Procedure

Figure 6.5.2 Flowchart of Extended Intelligent I/O Service Application Procedure

Execution by CPU

Job execution

Reinitializing EI2OS

Execution by EI2OS

Normal termination

Count-out OR

EI2OS initialization

Data transfer

(Channel switch)

Interrupt occurs by the end
request from a resource.

state

Processing the data in
the buffer

(Interrupt request) AND (ISE = 1)

56

CHAPTER 6 INTERRUPT HANDLING

6.6 Interrupt Control Register (ICR)

There are interrupt control registers (ICRs) in the interrupt controller. The number of
ICRs is equivalent to the number of all I/Os (internal resource I/Os) that have the
interrupt function.

Functions of Interrupt Control Registers (ICR0 to ICR15)

Each interrupt control register (ICR) has the following three functions:

• Sets the interrupt level of the associated internal resource.

• Selects either normal interrupt or extended intelligent I/O service to be executed for the
interrupt request from the associated internal resource.

• Selects the channel for extended intelligent I/O service.

Access to this register by read, modify, and write instructions should not be performed, because
it may cause faulty operation.

Interrupt Control Register (ICR) Bit Structure

Figure 6.6 shows the structure of the bits of the interrupt control register (ICR).

*: “1” is read by read operation.

Notes: • ICS3 to ICS0 are effective when the extended intelligent I/O service is activated. If the
extended intelligent I/O service is activated, set the ISE bit to “1”. If not, set this bit to “0”.
Unless the extended intelligent I/O service is activated, the settings of ICS3 to ICS0 may be
omitted.

• Only write is enabled for ISC1 and ICS0. Only read is enabled for S1 and S0.

Figure 6.6 Interrupt Control Register (ICR)

15/7 14/6 13/5 12/4 11/3 10/2 9/1 8/0

ICS3 ICS2 ICS1/S1 ICS0/S0 ISE IL2 IL1 IL0
00000111B when the interrupt
control register (ICR) is reset.

W W * * R/W R/W R/W R/W

57

MEMO

58

CHAPTER 6 INTERRUPT HANDLING

6.7 Meanings of the Bits of Interrupt Control Register (ICR)

The meanings of the bits of the interrupt control register (ICR) are as follows:

• Extended intelligent I/O service channel selection bits (ICS0 to ICS3): Any
combination of these bits specifies a channel for extended intelligent I/O
service.

• Extended intelligent I/O service end status (S0, S1): The combinations of S0
and S1 bits indicate the end conditions of the extended intelligent I/O service.

• Extended intelligent I/O service enable bit (ISE): This bit activates the extended
intelligent I/O service.

• Interrupt level setting bits (IL0 to IL2): Any combination of these bits sets an
interrupt level.

Extended Intelligent I/O Service Channel Selection Bits (bits 15 to 12 or bits 7 to 4: ICS0 to ICS3)

These bits are used for write only and any combination of these bits specifies a channel for
extended intelligent I/O service. A value set by these bits determines the address in the memory
of the extended intelligent I/O service descriptor which is detailed later in this manual. All ICSs
are initialized by reset. Table 6.7a lists ICSs bits, the channel numbers, and their mapped
descriptor addresses.

Table 6.7a Mapping of ICS Bits, Channel Numbers, and Descriptor Addresses

ICS3 ICS2 ICS1 ICS0
Selected
channel

Descriptor
address

0 0 0 0 0 000100H

0 0 0 1 1 000108H

0 0 1 0 2 000110H

0 0 1 1 3 000118H

0 1 0 0 4 000120H

0 1 0 1 5 000128H

0 1 1 0 6 000130H

0 1 1 1 7 000138H

1 0 0 0 8 000140H

1 0 0 1 9 000148H

1 0 1 0 10 000150H

1 0 1 1 11 000158H

1 1 0 0 12 000160H

1 1 0 1 13 000168H

1 1 1 0 14 000170H

1 1 1 1 15 000178H

59

CHAPTER 6 INTERRUPT HANDLING

Extended Intelligent I/O Service End Status (bits 13 and 12 or bits 5 and 4: S0 and S1)

These bits are used for read only. By checking a value set by these bits at the end of the
extended intelligent I/O service, you can know what the end condition was. After reset, any
value become “00”. Table 6.7b shows the relationship between the S0 and S1 bit settings and
the end conditions.

Table 6.7b Extended Intelligent I/O Service End Status Bits (S0 and S1)
and End Conditions

Extended Intelligent I/O Service Enable Bit (bit 11 or 3: ISE)

This bit is read and write enabled. If an interrupt request occurs with this bit set to “1”, the
extended intelligent I/O service is activated. If an interrupt request occurs with this bit set to “0”,
the interrupt sequence is activated. Furthermore, when any end condition for the extended
intelligent I/O service is met (that is, S1 and S0 bits are other than “00”), the ISE bit is cleared. If
the associated internal resource is not provided with extended intelligent I/O service, the ISE bit
must be set to “0” by software. The ISE bit is initialized to “0” by reset.

Interrupt Level Setting Bits (bits 10 to 8 or bits 2 to 0: IL2 to IL0)

These bits are read and write enabled and any combination of these bits specifies an interrupt
level of the associated internal resource. The setting is initialized to level 7 (no interrupt) by
reset. Table 6.7c shows the relationship between the interrupt level setting bits and the interrupt
levels.

Table 6.7c Interrupt Level Setting Bits and Associated Interrupt Levels

S1 S0 End condition

0 0 Reserved

0 1 End by count out

1 0 Reserved

1 1 End by the request from an internal resource

IL2 IL1 IL0 Level value

0 0 0 0 (Highest priority)

0 0 1 1

0 1 0 2

0 1 1 3

1 0 0 4

1 0 1 5

1 1 0 6 (Lowest priority)

1 1 1 7 (No interrupt)

60

CHAPTER 6 INTERRUPT HANDLING

6.8 Extended Intelligent I/O Service Descriptor (ISD)

The extended intelligent I/O service descriptor (ISD) is allocated to the area of 000100H
through 00017FH in the internal RAM. It consists of the following:

• Various types of control data for data transfer

• Status data

• Buffer address pointer

Extended Intelligent I/O Service Descriptor (ISD)

Figure 6.8 shows the structure of the extended intelligent I/O service descriptor (ISD).

Figure 6.8 Structure of Extended Intelligent I/O Service Descriptor

MSB

ISD start address

LSB
H

L

Upper 8 bits of data counter (DCTH)
Lower 8 bits of data counter (DCTL)
Upper 8 bits of I/O address pointer (IOAH)
Lower 8 bits of I/O address pointer (IOAL)
EI2OS status (ISCS)
Upper 8 bits of buffer address pointer (BAPH)
Medium 8 bits of buffer address pointer (BAPM)
Lower 8 bits of buffer address pointer (BAPL)

000100H + 8 × ICS

61

MEMO

62

CHAPTER 6 INTERRUPT HANDLING

6.9 Registers of Extended Intelligent I/O Service Descriptor

The extended intelligent I/O service descriptor (ISD) consists of the following registers:

• Buffer address pointer (BAP)

• Extended intelligent I/O service status register (ISCS)

• I/O register address pointer (IOA)

• Data counter (DCT)

Note that these registers are undefined when reset.

Buffer Address Pointer (BAP)

The buffer address pointer (BAP) is a 24-bit register that holds an address to be used in the next
transfer by extended intelligent I/O service. An independent buffer address pointer (BAP) exists
for each extended intelligent I/O service channel. Thus, data transfer on each extended
intelligent I/O service channel is possible between an arbitrary address among 16 Mbytes and I/
O.

Note: If the BF bit in the extended intelligent I/O service status register (ISCS) indicates “update
enabled”, only the lower 16 bits of BAP (BAPL) will change, but the upper 8 bits (BAPH)
will not change.

Extended Intelligent I/O Service Status Register (ISCS)

The extended intelligent I/O service status register (ISCS) is a register of 8bits length. It
indicates whether the value is updated or fixed and incremental or decremental update is
enabled regarding the buffer address pointer and the I/O register address pointer. In addition, it
indicates the data format (byte/word) for transfer and the transfer direction. Figure 6.9a shows
the structure of the extended intelligent I/O service status register (ISCS).

Note: ISCS bits 7 to 5 must be coded with “0”.

Figure 6.9a Structure of Extended Intelligent I/O Service Status Register (ISCS)

The contents of the bits of the ISCS register are as follows:

 Bit 4 (IF): Specifies whether the I/O register address pointer is updated or fixed.

• 0: The I/O register address pointer is updated after the data transfer.

• 1: The I/O register address pointer is not updated after the data transfer.

Note: Only increment is enabled.

7 6 5 4 3 2 1 0

Reserved Reserved Reserved IF BW BF DIR SE : ISCS (undefined when reset)

63

CHAPTER 6 INTERRUPT HANDLING

Bit 3 (BW): Specifies the data length for transfer.

• 0: Byte

• 1: Word

Bit 2 (BF): Indicates whether the buffer address pointer is updated or fixed.

• 0: The buffer address pointer is updated after the data transfer.

• 1: The buffer address pointer is not updated after the data transfer.

Note: If updated, only the lower 16 bits of the buffer address pointer will change. Only
increment is enabled.

Bit 1 (DIR): Specifies the data transfer direction.

• 0: I/O → Buffer

• 1: Buffer → I/O

Bit 0 (SE): Controls the termination of the extended intelligent I/O service by the request
from an internal resource.

• 0: Does not terminate the extended intelligent I/O service by the request from an
internal resource.

• 1: Terminates the extended intelligent I/O service by the request from an internal
resource.

I/O Register Address Pointer (IOA)

The I/O register address pointer (IOA) is a register of 16 bits length. It indicates the lower digits
of the address (A15 to A0) of the I/O register that transfers data between itself and the buffer.
All upper positions of the address (A23 to A16) are coded with “0”, and an arbitrary I/O address
from 000000H to 00FFFFH can be specified in the upper positions.

Figure 6.9b shows the structure of the I/O register address pointer (IOA).

Figure 6.9b Structure of I/O Register Address Pointer (IOA)

Data Counter (DCT)

The data counter (DCT) is a register of 16 bits length and holds the data count for transfer.
Before each data is transferred, this counter is decremented by one. When this counter value
becomes zero, the extended intelligent I/O service is terminated.

Figure 6.9c shows the structure of the data counter.

Figure 6.9c Structure of data counter (DCT)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A15 A14 A13 A12 A11 A10 A09 A08 A07 A06 A05 A04 A03 A02 A01 A00 : IOA (undefined when reset)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B15 B14 B13 B12 B11 B10 B09 B08 B07 B06 B05 B04 B03 B02 B01 B00 : DCT (undefined when reset)

64

CHAPTER 6 INTERRUPT HANDLING

6.10 Exception Processing

Exception processing is basically the same as interrupts. Upon the detection of an
exceptional event on a boundary between instructions, exception processing is
performed apart from normal execution. Generally, exception processing occurs as a
result of an unexpected action. Thus, it is recommended to use the exception
processing feature only for debugging purposes or reactivating the software for
recovery in case of emergency.

Exception Occurrence Because of the Execution of an Undefined Instruction

F2MC-16LX handles all codes that have not been defined in the instruction map as undefined
instructions. If an undefined instruction is executed, F2MC-16LX performs a processing similar to
“INT 10” which is a software interrupt instruction. That is, the execution branches to a routine
indicated by the interrupt number 10 vector, after the contents of the following eight components
are saved into the system stack:

• Lower bits of accumulator (AL)

• Upper bits of accumulator (AH)

• Direct page register (DPR)

• Data bank register (DTB)

• Additional bank register (ADB)

• Program bank register (PCB)

• Program counter (PC)

• Processor status (PS)

Then, F2MC-16LX clears the interrupt enable flag (I flag) and sets the stack flag (S flag). The
value of PC saved into the stack is that address of the location where the undefined instruction is
stored. For 2-byte or longer instruction codes, it is that address of the location where the code
identified as being undefined is stored. It is possible to make recovery by the RETI instruction,
but the same exception recurs, so there is no point in making such recovery.

65

CHAPTER 7 ADDRESSING

This chapter describes addressing for the F2MC-16LX instructions.

Addressing specifies the data to be used and an address.

In F2MC-16LX, effective addressing or an instruction code used determines the address
format (absolute address or relative address). When the address format is determined
by the instruction code itself, an address must be specified in compliance with the
instruction code used.

Some instructions enable several types of addressing to be specified.

7.1 Effective Address Field

7.2 Direct Addressing

7.3 Indirect Addressing

66

CHAPTER 7 ADDRESSING

7.1 Effective Address Field

Table 7.1 lists the address formats that may be specified in the effective address field.

Effective Address Field

Table 7.1 Effective Address Field

Code Coding Address format Default bank

00
01
02
03
04
05
06
07

R0
R1
R2
R3
R4
R5
46
47

RW0
RW1
RW2
RW3
RW4
RW5
RW6
RW7

RL0
(RL0)
RL1

(RL1)
RL2

(RL2)
RL3

(RL3)

Register direct

Each column corresponds to the address coding
in the byte, word, and long word types in the
order left to right.

None

08
09
0A
0B

@RW0
@RW1
@RW2
@RW3

Register indirect DTB
DTB
ADB
SPB

0C
0D
0E
0F

@RW0 +
@RW1 +
@RW2 +
@RW3 +

Register indirect with post-increment DTB
DTB
ADB
SPB

10
11
12
13

@RW0 + disp8
@RW1 + disp8
@RW2 + disp8
@RW3 + disp8

Register indirect with 8-bit displacement DTB
DTB
ADB
SPB

14
15
16
17

@RW4 + disp8
@RW5 + disp8
@RW6 + disp8
@RW7 + disp8

Register indirect with 8-bit displacement DTB
DTB
ADB
SPB

18
19
1A
1B

@RW0 + disp16
@RW1 + disp16
@RW2 + disp16
@RW3 + disp16

Register indirect with 16-bit displacement DTB
DTB
ADB
SPB

1C
1D
1E
1F

@RW0 + RW7
@RW1 + RW7
@PC + disp16
addr16

Register indirect with index
Register indirect with index
PC indirect with 16-bit displacement
Direct address

DTB
DTB
PCB
DTB

67

MEMO

68

CHAPTER 7 ADDRESSING

7.2 Direct Addressing

In direct addressing, a value, register, and address must be directly specified for the
operands.

Direct Addressing

Immediate data (#imm)

Directly specify an operand value. There are four types of immediate data according to
data length as below:

• #imm4

• #imm8

• #imm16

• #imm32

Register direct

Directly specify a register for the operand. Registers that can be specified are as below:

• General-purpose registers (Byte): R0, R1, R2, R3, R4, R5, R6, R7

(Word): RW0, RW1, RW2, RW3, RW4, RW5, RW6, RW7

(Long word): RL0, RL1, RL2, RL3

• Dedicated registers (Accumulator): A, AL

(Pointer): SP *

(Bank): PCB, DTB, USB, SSB, ADB

(Page): DPR

(Control): PS, CCR, RP, ILM

*: For SP, either user stack pointer (USP) or system stack pointer (SSP) is selected
for use, according to the value of the S flag in the condition code register (CCR).
For branch instructions, program counter (PC) is not described in the operand of
the instruction, but it is automatically specified.

Direct branch address (addr16)

Directly specify an address to which the execution will branch by means of displacement.
The address length with displacement is 16 bits and the address indicates the destination
of the branch in the logical space. This addressing is applied to an unconditional branch
instruction and a subroutine call instruction. Bits 16 to 23 of the address are given by the
program bank register (PCB).

Physical direct branch address (addr24)

Directly specify a physical address to which the execution will branch by means of
displacement. The data length with displacement is 24 bits. This addressing is applied to
an unconditional branch instruction, a subroutine call instruction, and a software interrupt
instruction.

69

CHAPTER 7 ADDRESSING

 I/O direct (io)

Directly specify a memory address in the operand by means of 8-bit displacement.
Independently of the respective values of data bank register (DTB) and direct page
register (DPR), the I/O space with physical addresses 000000H to 0000FFH is accessible.
Invalid is the description of bank select prefix to specify a bank before an instruction using
this addressing.

Abbreviated direct address (dir)

Specify lower eight bits of a memory address in the operand. Bits 8 to 15 of the address
are given by the direct page register (DPR). Bits 16 to 23 of the address are given by the
data bank register (DTB).

Direct address (addr16)

Specify lower 16 bits of a memory address in the operand. Bits 16 to 23 of the address
are given by the data bank register (DTB).

I/O direct bit address (io:bp)

Directly specify a bit within the range of physical addresses 000000H to 0000FFH. Bit
position is represented by :bp. The higher number is the most significant bit and the lower
number the least significant bit.

Abbreviated direct bit address (dir:bp)

Directly specify lower eight bits of a memory address in the operand. Bits 8 to 15 of the
address are given by the direct page register (DPR). Bits 16 to 23 of the address are
given by the data bank register (DTB). Bit position is represented by :bp. The higher
number is the most significant bit and the lower number the least significant bit.

Direct bit address (addr16:bp)

Directly specify an arbitrary bit within 64 Kbytes. Bits 16 to 23 of the address are given by
the data bank register (DTB). Bit position is represented by :bp. The higher number is the
most significant bit and the lower number the least significant bit.

Vector address (#vct)

The address to which the execution will branch is determined by the content of the vector
that is specified herein. The vector number data length may be either four bits or eight
bits. This addressing is applied to a subroutine call instruction and a software interrupt
instruction.

70

CHAPTER 7 ADDRESSING

7.3 Indirect Addressing

In indirect addressing, the data indicated by the operand you coded indirectly gives an
address.

Indirect Addressing

Register indirect (@RWj j = 0 to 3)

The register indirect addressing is used to access a memory location whose address is
specified by the content of general-purpose register RWj. Bits 16 to 23 of the address are
given by the data bank register (DTB) if RW0 and RW1 are used, the SPB if RW3 is used,
and the additional data bank register (ADB) if RW2 is used.

Register indirect with post-increment (@RWj+ j = 0 to 3)

This addressing is also used to access a memory location whose address is specified by
the content of general-purpose register RWj. After the execution of the operand
operation, RWj is incremented by the operand data length (1 for byte, 2 for word, and 4 for
long word). Bits 16 to 23 of the address are given by the data bank register (DTB) if RW0
and RW1 are used, the SPB if RW3 is used, and the additional data bank register (ADB) if
RW2 is used.

If the value resulting from post-increment indicates the address of the increment-specified
register itself, the value of this register is incremented when referenced subsequently.
Then, if a data write instruction is issued to the register, the priority is given to the data
write instruction, so that the register value, which would otherwise be incremented,
becomes the written data.

Register indirect with displacement (@RWi+dip8 i = 0 to 7, @RWj+disp16 j = 0 to 3)

This addressing is used to access a memory location whose address is specified by the
displacement added to the content of general-purpose register RWj. Displacement may
be either byte or word and is added as a signed value. Bits 16 to 23 of the address are
given by the data bank register (DTB) if RW0, RW1, RW4, and RW5 are used. Bits 16 to
23 are given by the SPB if RW3 and RW7 and the additional data bank register (ADB) if
RW2 and RW6 are used.

Long register indirect with displacement (@RLi+disp8 i = 0 to 3)

This addressing is used to access a memory location whose address is specified by the
lower 24 bits that result from the displacement added to the content of general-purpose
register RLi. Displacement is eight bits and added as a signed value.

Program counter indirect with displacement (@PC+disp16)

This addressing is used to access a memory location whose address is specified by
(address of instruction + 4 + disp16). Displacement is a word length. Bits 16 to 23 of the
address are given by the program bank register (PCB).

Note that respective operand addresses of the instructions listed below are not regarded
as being (next instruction address + disp16):

• DBNZ eam,rel

• DWBNQ eam,rel

• CBNE eam,#imm8,rel

• CWBNE eam,#imml16,rel

71

CHAPTER 7 ADDRESSING

• MOV eam,#imm8

• MOVM eam,#imm16

Register indirect with base index (@RW0+RW7, @RW1+RW7)

This addressing is used to access a memory location whose address is specified by a
value obtained by adding the content of RW0 or RW1 to the content of general-purpose
register RW7. Bits 16 to 23 of the address are given by the data bank register (DTB).

Program counter relative branch address (rel)

The address to which the execution will branch is determined by a value obtained by
adding the 8-bit displacement to the value of the program counter (PC). If the result of the
addition exceeds 16 bits, the bank register is not incremented or decremented and the
excess is ignored. Consequently, the address falls within the closed bank of 64 Kbytes.
This addressing is applied to an unconditional or conditional branch instruction. Bits 16 to
23 of the address are given by the program bank register (PCB).

Register List (rlst)

This addressing specifies a register subjected to push/pop for the stack (see Figure 7.3).

Figure 7.3 Structure of Register List

Accumulator indirect (@A)

This addressing is used to access a memory location whose address is specified by the
16-bit content of the lower bytes of the accumulator (AL). Bits 16 to 23 of the address are
given by the data bank register (DTB).

Accumulator indirect branch address (@A)

The address to which the execution will branch is determined by the 16-bit content of the
lower bytes of the accumulator (AL). This address indicates the destination of the branch
within the bank space. Bits 16 to 23 of the address are given by the program bank
register (PCB). In the case of the jump context (JCTX) instruction, however, bits 16 to 23
of the address are given by the data bank register (DTB). This addressing is applied to an
unconditional branch instruction.

Indirectly specified branch address (@ear)

The word data with the address specified by ear corresponds to the address to which the
execution will branch.

Indirectly specified branch address (@eam)

The word data with the address specified by eam corresponds to the address to which the
execution will branch.

MSB LSB

When the bit is 1, the associated register is selected. When the bit is 0, the associated
register is not selected.

RW7 RW6 RW5 RW4 RW3 RW2 RW1 RW0

72

MEMO

73

CHAPTER 8 INSTRUCTION OVERVIEW

This chapter provides explanation for the items described in Chapter 9, “Detailed
Execution Instructions” and what the symbols used therein stand for.

8.1 Instruction Overview

8.2 Symbols (Abbreviations) Used in Detailed Execution Instructions

8.3 Effective Address Field

8.4 Execution Cycles

74

CHAPTER 8 INSTRUCTION OVERVIEW

8.1 Instruction Overview

In Chapter 9, “Detailed Execution Instructions,” the following items are described for
each instruction.

• Assembler format • Execution cycles

• Operation • Correction value

• CCR • Example

• Byte count

Instruction Overview

In Chapter 9, “Detailed Execution Instructions,” the following items are described for each
instruction.

 Assembler format

The format for coding each instruction into an assembler source program is presented.

• Upper case letters and symbols: Write them as they are into a source program.

• Lower case letters: Rewrite them into a source program.

• Number after a lower case letter: Indicates a bid width in the instruction.

Operation

The operation for registers and data by instruction execution is presented.

CCR

The status of each flag (I, S, T, N, Z, V, and C) of the Condition Code Register (CCR) is
presented.

• *: Denotes that the flag changes with the instruction execution.

• –: Denotes that the flag does not change with the instruction execution.

• S: Denotes that the flag is set with the instruction execution.

• R: Denotes that the flag is reset with the instruction execution.

Byte count

The byte count of the instruction (machine language) after assembled is presented.

Execution cycles

The number of instruction execution cycles is presented.

For the meaning of the letter symbol used in the table, which is presented for description
of execution cycles, see Table 8.4a.

Correction value

A correction value used for calculating the number of instruction execution cycles is
presented. For the meanings of the letter symbols ((b), (c), and (d)) used in the table,
which is presented for description of correction values, see Table 8.4b. The number of
instruction execution cycles is determined by the sum of a value given in the column of
execution cycles and a value given in the column of correction value.

75

CHAPTER 8 INSTRUCTION OVERVIEW

Example

An example of each instruction is presented.

All numeric values of the data given in any example are hexadecimal numbers. Any
numeric value of the data given in the operand represents a hexadecimal number with
suffix (H).

76

CHAPTER 8 INSTRUCTION OVERVIEW

8.2 Symbols (Abbreviations) Used in Detailed Execution
Instructions

Table 8.2 lists the symbols used in detailed execution instruction.

Symbols (abbreviations) Used in Detailed Execution Instructions

Table 8.2 Symbols (abbreviations) Used in Detailed Execution Instructions

Coding Meaning

A

32-bit accumulator
The length of bits used varies depending on the instruction.
ThByte: Lower 8 bits of AL
ThWord: 16 bits of AL
ThLong word: 32 bits of AL and AH

AH
AL

Upper 16 bits of A
Lower 16 bits of A

SP Stack pointer (USP or SSP)

PC Program counter

PCB Program bank register

DTB Data bank register

ADB Additional bank register

SSB System stack bank register

USB User stack bank register

DPR Direct page register

brg1 DTB, ADB, SSB, USB, DPR, PCB

brg2 DTB, ADB, SSB, USB, DPR

Ri R0, R1, R2, R3, R4, R5, R6, R7

Rj R0, R1, R2, R3

RWi RW0, RW1, RW2, RW3, RW4, RW5, RW6, RW7

RWj RW0, RW1, RW2, RW3

RLi RL0, RL1, RL2, RL3

dir Abbreviated direct addressing

addr16
addr24

ad24 0-15
ad24 16-23

Direct addressing
Physical direct addressing
Bits 0 to 15 of addr24
Bits 16 to 23 of addr24

io I/O area (000000H to 0000FFH)

imm4
imm8

imm16
imm32

ext (imm8)

4-bit immediate data
8-bit immediate data
16-bit immediate data
32-bit immediate data
16-bit data resulting from the code extension of 8-bit immediate data

disp8
disp16

8-bit displacement
16-bit displacement

bp Bit offset value

77

CHAPTER 8 INSTRUCTION OVERVIEW

vct4
vct8

Vector number (0 to 15)
Vector number (0 to 255)

()b Bit address

re1 Specifies a PC relative branch.

ear
eam

Effective addressing (codes 00 to 07)
Effective addressing (codes 08 to 1F)

r1st Register list

Table 8.2 Symbols (abbreviations) Used in Detailed Execution Instructions (Continued)

Coding Meaning

78

CHAPTER 8 INSTRUCTION OVERVIEW

8.3 Effective Address Field

Table 8.3 lists the address formats that may be specified in the effective address field.

Effective Address Field

Table 8.3 Effective Address Field

*: The byte count of address extension corresponds to “#” (byte count) shown in the instruction list and “+”
shown in the byte count field of each detailed instruction.

Code Coding Address format
Byte count of address

extension *

00
01
02
03
04
05
06
07

R0
R1
R2
R3
R4
R5
R6
R7

RW0
RW1
RW2
RW3
RW4
RW5
RW6
RW7

RL0
(RL0)
RL1

(RL1)
RL2

(RL2)
RL3

(RL3)

Register direct

Each column corresponds to the address
coding in the byte, word, and long word
types in the order left to right. -

08
09
0A
0B

@RW0
@RW1
@RW2
@RW3

Register indirect

0

0C
0D
0E
0F

@RW0 +
@RW1 +
@RW2 +
@RW3 +

Register indirect with post-increment

0

10
11
12
13
14
15
16
17

@RW0 + disp8
@RW1 + disp8
@RW2 + disp8
@RW3 + disp8
@RW4 + disp8
@RW5 + disp8
@RW6 + disp8
@RW7 + disp8

Register indirect with 8-bit displacement

1

18
19
1A
1B

@RW0 + disp16
@RW1 + disp16
@RW2 + disp16
@RW3 + disp16

Register indirect with 16-bit displacement

2

1C
1D
1E
1F

@RW0 + RW7
@RW1 + RW7
@PC + disp16
addr16

Register indirect with index
Register indirect with index
PC indirect with 16-bit displacement
Direct address

0
0
2
2

79

MEMO

80

CHAPTER 8 INSTRUCTION OVERVIEW

8.4 Execution Cycles

The number of cycles required for the execution of an instruction (execution cycles) is
obtained by adding a “correction value”, which is determined according to the
condition, to the number of “cycles” specific to each instruction. However, actual
instruction execution cycles may include the cycles required for reading the program
in addition to the sum of “cycles” and a “correction value”.

Execution Cycles

The number of cycles required for the execution of an instruction is obtained by adding up
the number of “cycles” specific to each instruction, a “correction value”, which is
determined according to the condition, and “cycles” required for program fetch.

When fetching a program stored in a memory connected to a 16-bit bus, such as a built-in
ROM, program fetch is performed each time the instruction under execution passes over a
2-byte (word) boundary. If data access interference occurs, it results in an increasing
number of execution cycles.

When fetching a program stored in a memory connected to an 8-bit bus, which is an
external data bus, program fetch is performed per byte in the instruction under execution.
If data access interference occurs, it results in an increasing number of execution cycles.

During CPU intermittent operation, the access to a general-purpose register, built-in ROM,
built-in RAM, built-in I/O or external bus causes the CPU clock to make a halt for a certain
time. This CPU halt time is equivalent to the number of cycles specified by the CG1/0 bit
of the low power consumption mode control register. Therefore, the number of cycles
required for the execution of an instruction during the CPU intermittent operation should
be calculated differently. That is, add a “correction value” determined by the “number of
times of access “x” cycles” for the CPU halt time to normal execution cycles.

Calculating Execution Cycles

Table 8.4a, Table 8.4b, and Table 8.4c provide the referential information which may help
you to calculate instruction execution cycles.

Table 8.4a Execution Cycles Specific to Each Addressing Method of an Effective Address

Code Operand

(a) *
Number of times of register access
specific to each addressing methodExecution cycles specific to

each addressing method

00
|

07

Ri
RWi
RLi

Presented in the instruction list. Presented in the instruction list.

08
|

0B
@RWj 2 1

0C
|

0F
@RWj + 4 2

*: (a) is used in “–” (cycles) and “B” (correction value) in Appendix B, “F2MC-16LX Instruction
List” as well as Chapter 9, “Detailed Execution Instructions”.

81

CHAPTER 8 INSTRUCTION OVERVIEW

Table 8.4b Correction Values for Cycles Used for Calculating Actual Execution Cycles

*: (b), (c), and (d) are used in “–” (cycles) and “B” (correction value) in Appendix B, “F2MC-16LX Instruction List”
as well as Chapter 9, “Detailed Execution Instructions”.

Note: For the application to external buses, the wait cycles for ready input and automatic ready must be added.

Table 8.4c Correction Values for Cycles Used for Calculating Program Fetch Cycles

Note: • For the application to external buses, the wait cycles for ready input and automatic
ready must be added.

• Actually, all program fetches do not always cause the delay of the execution of an
instruction. Thus, these correction values should be used to calculate the required
execution cycles in the worst case.

10
|

17
@RWi + disp8 2 1

18
|

1B
@RWj + disp16 2 1

1C
1D
1E
1F

@RW0 + RW7
@RW1 + RW7
@PC + disp16

addr16

4
4
2
1

2
2
0
0

*: (a) is used in “–” (cycles) and “B” (correction value) in Appendix B, “F²MC-16LX Instruction
List” as well as Chapter 9, “Detailed Execution Instructions”.

Operand

(b) * byte (c) * word (d) * long

The
number of

cycles

The number
of times of

access

The
number of

cycles

The number
of times of

access

The number
of cycles

The number
of times of

access

Internal register +0 1 +0 1 +0 2

Internal memory even address
Internal memory odd address

+0
+0

1
1

+0
+2

1
2

+0
+4

2
4

External data bus 16-bit even
address
External data bus 16-bit odd address

+1

+1

1

1

+1

+4

1

2

+2

+8

2

4

External data bus 8-bit +1 1 +4 2 +8 4

Instruction Byte boundary Word boundary

Internal memory – +2

External data bus 16-bit – +3

External data bus 8-bit +3 –

Table 8.4a Execution Cycles Specific to Each Addressing Method of an Effective Address
(Continued)

Code Operand

(a) *
Number of times of register access
specific to each addressing methodExecution cycles specific to

each addressing method

82

MEMO

83

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

This chapter explains each of the execution instructions used by the assembler, in
reference format. The execution instructions are presented in alphabetical order.

For an explanation of each of the items and symbols (abbreviations) used in the explanation of
each execution instruction, see Section 8.1, “Instruction Overview”.

For an explanation of the alphabetic characters (a), (b), (c), and (d) used in an explanation
(table) of correction values and numbers of cycles, see Tables 8.4a and 8.4b.

84

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

ADD (Add Byte Data of Destination and Source to
Destination)

Add the byte data specified by the second operand to the byte data specified by the
first operand and store the result in the first operand. If the first operand is the
accumulator (A), zeros are transferred to bits 8 to 15 of A.

Assembler format: ADD A,#imm8 ADD A,dir

ADD A,ear ADD A,eam

ADD ear,A ADD eam,A

Operation: (First operand) ← (First operand)+(Second operand) (Byte addition)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Set when an overflow has occurred as a result of the operation, cleared
otherwise.

C: Set when a carry has occurred as a result of the operation, cleared otherwise.

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (b) in the table, see Tables 8.4a and 8.4b.

I S T N Z V C

– – – * * * *

First operand A A A A ear eam

Second operand #im8 dir ear eam A A

Number of bytes 2 2 2 2+ 2 2+

Number of cycles 2 3 3 4+(a) 3 5+(a)

Correction value 0 (b) 0 (b) 0 2×(b)

85

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: ADD A,0E021H

In this example, the data (ABH) at address E021H is added to the least significant byte
data (46H) of A.

× × × × A 0 4 6 A

Before execution

× × × × 0 0 F 1 A

After execution

Memory

A B E021

Memory

A B E021

CCR × × × × ×
T N Z V C

CCR × 1 0 0 0

T N Z V C

86

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

ADDC (Add Byte Data of AL and AH with Carry to AL)

Add the low-order byte data of AL, low-order byte data of AH, and carry bit (C) together
and store the result in AL. Zeros are transferred to the high-order byte of AL.

Assembler format: ADDC A

Operation: (AL) ← (AH)+(AL)+(C) (Byte addition with a carry)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Set when an overflow has occurred as a result of the operation, cleared
otherwise.

C: Set when a carry has occurred as a result of the operation, cleared
otherwise.

Number of bytes: 1

Number of cycles: 2

Correction value: 0

Example: ADDC A

In this example, the low-order byte data (05H) of AH, low-order byte data (D4H) of AL, and
carry bit (0) are added together.

I S T N Z V C

– – – * * * *

0 5 0 5 0 0 D 4 A

Before execution

0 5 0 5 0 0 D 9 A

After execution

CCR × × × × 0

T N Z V C

CCR × 1 0 0 0

T N Z V C

87

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

ADDC (Add Byte Data of Accumulator and Effective Address
with Carry to Accumulator)

Add the least significant byte data of the accumulator (A), byte data at the effective
address, and carry bit (C) together and store the result in the least significant byte of A.
Zeros are transferred to bits 8 to 15 of A.

Assembler format: ADDC A,ear ADDC A,eam

Operation: (A) ← (A)+(ea)+(C) (Byte addition with a carry)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Set when an overflow has occurred as a result of the operation, cleared
otherwise.

C: Set when a carry has occurred as a result of the operation, cleared
otherwise.

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (b) in the table, see Tables 8.4a and 8.4b.

Example: ADDC A,0E035H

In this example, the least significant byte data (46H) of A, data (D5H) at address E035H, and
carry bit (1) are added together.

I S T N Z V C

– – – * * * *

First operand A A

Second operand ear eam

Number of bytes 2 2+

Number of cycles 3 4+(a)

Number of accesses 0 (b)

× × × × A 0 4 6 A

Before execution

× × × × 0 0 2 C A

After execution

Memory

D 5 E035

Memory

D 5 E035

CCR × × × × 1

T N Z V C

CCR × 0 0 0 1

T N Z V C

88

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

ADDCW (Add Word Data of Accumulator and Effective Address
with Carry to Accumulator)

Add the low-order word data (AL) of the accumulator (A), word data specified by the
second operand, and carry bit (C) together and store the result in the low-order word of
A.

Assembler format: ADDCW A,ear ADDCW A,eam

Operation: (A) ← (A)+(ea)+(C) (Word addition with a carry)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Set when an overflow has occurred as a result of the operation, cleared
otherwise.

C: Set when a carry has occurred as a result of the operation, cleared otherwise.

Number of bytes:

Number of cycles:

Corrrection value:

For an explanation of (a) and (c) in the table, see Tables 8.4a and 8.4b.

Example: ADDCW A,@RW0+

In this example, the low-order word data (2068H) of A, address data (8952H) specified by
RW0, and carry bit (1) are added together.

I S T N Z V C

– – – * * * *

First operand A A

Second operand ear eam

Number of bytes 2 2+

Number of cycles 3 4+(a)

Correction value 0 (c)

× × × × 2 0 6 8 A

Before execution

× × × × A 9 B B A

After execution

Memory

8 9 E025

Memory

8 9 E025

E 0 2 4RW0 E 0 2 6RW0

5 2 E024 5 2 E024

CCR × × × × 1

T N Z V C

CCR × 1 0 0 0

T N Z V C

89

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

ADDDC (Add Decimal Data of AL and AH with Carry to AL)

Add the low-order byte data of AL, low-order byte of AH, and carry bit (C) together in
decimal and store the result in the low-order byte of AL. Zeros are transferred to the
high-order byte of AL.

Assembler format: ADDDC A

Operation: (AL) ← (AH)+(AL)+(C) (Decimal addition with a carry)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Undefined

C: Set when a carry has occurred as a result of the decimal operation, cleared
otherwise.

Number of bytes: 1

Number of cycles: 3

Correction value: 0

Example: ADDDC A

In this example, the low-order byte data (62H) of AL, low-order byte data (58HH) of AH,
and carry bit (C) are added together in decimal.

I S T N Z V C

– – – * * * *

× × 6 2 × × 5 8 A

Before execution

× × 6 2 0 0 2 0 A

After execution

CCR × × × × 0
T N Z V C

CCR × 0 0 × 1

T N Z V C

90

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

ADDL (Add Long Word Data of Destination and Source to
Destination)

Add the long word data specified by the second operand to the long word data
specified by the first operand and store the result in the first operand.

Assembler format: ADDL A,#imm32

ADD A,ear ADDL A,eam

Operation: (First operand) ← (First operand)+(Second operand) (Long word addition)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Set when an overflow has occurred as a result of the operation, cleared
otherwise.

C: Set when a carry has occurred as a result of the operation, cleared otherwise.

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (b) in the table, see Tables 8.4a and 8.4b.

I S T N Z V C

– – – * * * *

First operand A A A

Second operand #i32 ear eam

Number of bytes 5 2 2+

Number of cycles 4 6 7+(a)

Correction value 0 0 (b)

91

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: ADDL A,0E077H

In this example, the data (357F41ABH) at addresses E077H to E07AH is added to the data
(85B7A073H) of A.

Before execution After execution

Memory

3 5 E07A
7 F E079
4 1 E078
A B E077

Memory

3 5 E07A
7 F E079
4 1 E078
A B E077

8 5 B 7 A 0 7 3 A B B 3 6 E 2 1 E A

CCR × × × × ×
T N Z V C

CCR × 1 0 0 0

T N Z V C

92

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

ADDSP (Add Word Data of Stack Pointer and Immediate Data
to Stack Pointer)

Add 16-bit immediate data or the value resulting from sign-extending 8-bit immediate
data to the word data pointed to by SP (stack pointer) and store the result in SP. If the
addition result exceeds 16 bits, an underflow occurs.

CCR does not indicate whether an underflow has occurred.

Assembler format: (1) ADDSP #imm8

(2) ADDSP #imm16

Operation: (1) (SP) ← (SP)+Sign-extended #imm8 (Word addition)

(2) (SP) ← (SP)+#imm16 (Word addition)

CCR:

None of the flags is changed.

Number of bytes:

Number of cycles:

Correction value:

Example: ADDSP #89BAH

In this example, 89BAH is added. The addition result exceeds 16 bits, causing an
underflow.

I S T N Z V C

– – – – – – –

Operand #im8 #i16

Number of bytes 2 3

Number of cycles 3 3

Correction value 0 0

E 2 A 4

× 0 0 0 0CCR

SP

T N Z V C

Before execution

6 C 5 E

× 0 0 0 0CCR

SP

T N Z V C
After execution

93

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

ADDW (Add Word Data of AL and AH to AL)

Add the word data of AH and that of AL together and store the result to AL.

Assembler format: ADDW A

Operation: (AL) ← (AH)+(AL) (Word addition)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Set when an overflow has occurred as a result of the operation, cleared
otherwise.

C: Set when a carry has occurred as a result of the operation, cleared
otherwise.

Number of bytes: 1

Number of cycles: 2

Correction value: 0

Example: ADDW A

In this example, a carry occurs, causing the carry flag to be set.

I S T N Z V C

– – – * * * *

8 3 A 2 7 F 2 3 A

Before execution

8 3 A 2 0 2 C 5 A

After execution

CCR × × × × ×
T N Z V C

CCR × 0 0 0 1

T N Z V C

94

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

ADDW (Add Word Data of Destination and Source to
Destination)

Add the word data specified by the second operand to the word data specified by the
first operand and store the result in the first operand.

Assembler format: ADDW A,#imm16

ADDW A,ear ADDW A,eam

ADDW ear,A ADDW eam,A

Operation: (First operand) ← (First operand)+(Second operand) (Word addition)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Set when an overflow has occurred as a result of the operation, cleared
otherwise.

C: Set when a carry has occurred as a result of the operation, cleared otherwise.

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (c) in the table, see Tables 8.4a and 8.4b.

I S T N Z V C

– – – * * * *

First operand A A A ear eam

Second operand #i16 ear eam A A

Number of bytes 3 2 2+ 2 2+

Number of cycles 2 3 4+(a) 3 5+(a)

Correction value 0 0 (c) 0 2×(c)

95

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: ADDW @RW0+1,A

In this example, the low-order word data (CD04H) of the accumulator is added to the value
(315DH) specified by @RW0+1.

Before execution After execution

Memory

3 1 E2A6

Memory

F E E2A6

E 2 A 4RW0 E 2 A 4RW0

5 D E2A5 6 1 E2A5
X X E2A4 × × E2A4

× × × × C D 0 4 A × × × × C D 0 4 A

CCR × × × × ×
T N Z V C

CCR × 1 0 0 0

T N Z V C

96

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

AND (And Byte Data of Destination and Source to
Destination)

Take the logical AND of the byte data specified by the first operand and the byte data
specified by the second operand and store the result in the first operand.

Assembler format: AND A,#imm8

AND A,ear AND A,eam

AND ear,A AND eam,A

Operation: (First operand) ← (First operand) and (Second operand) (Byte logical AND)

The logical AND of the byte data specified by the first operand and the byte data specified
by the second operand is taken on a bit-by-bit basis and the result is stored in the first
operand.

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Cleared

C: Unchanged

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (b) in the table, see Tables 8.4a and 8.4b.

I S T N Z V C

– – – * * R –

First operand A A A ear eam

Second operand #im8 ear eam A A

Number of bytes 2 2 2+ 2 2+

Number of cycles 2 3 4+(a) 3 5+(a)

Correction value 0 0 (b) 0 2×(b)

97

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: AND 0052H,A

In this example, the logical AND is taken of the address data (FAH) at 0052H and the least
significant byte data (55H) of the accumulator.

× × × × 0 0 5 5 A

Before execution

× × × × 0 0 5 5 A

After execution

Memory

F A 0052

Memory

5 0 0052

CCR × × × × ×
T N Z V C

CCR × 0 0 0 ×
T N Z V C

98

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

AND (And Byte Data of Immediate Data and Condition Code
Register)

Take the logical AND of the byte data of the condition code register (CCR) and 8-bit
immediate data and store the result in CCR.

In the logical AND operation, the most significant bit of the byte data is not taken into
consideration.

Assembler format: AND CCR,#imm8

Operation: (CCR) ← (CCR) and #imm8 (Byte logical AND)

CCR:

 I : Stores bit 6 of the operation result.

S : Stores bit 5 of the operation result.

T : Stores bit 4 of the operation result.

N: Stores bit 3 of the operation result.

Z : Stores bit 2 of the operation result.

V : Stores bit 1 of the operation result.

C: Stores bit 0 of the operation result.

Number of bytes: 2

Number of cycles: 3

Correction value: 0

Example: AND CCR,#57H

In this example, the logical AND is taken of the value (0110101B) of the condition code
register (CCR) and 57H.

I S T N Z V C

* * * * * * *

× × × × × × × ×

CCR

A

ILM

Before execution

0
I

1
S

1
T

0
N

1
Z

0
V

1
C

×
ILM2

×
ILM1

×
ILM0

×
MSB

× × × ×
LSB

RP

× × × × × × × ×

CCR

A

ILM

After execution

0
I

0
S

1
T

0
N

1
Z

0
V

1
C

×
ILM2

×
ILM1

×
ILM0

×
MSB

× × × ×
LSB

RP

99

MEMO

100

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

ANDL (And Long Word Data of Destination and Source to
Destination)

Take the logical AND of the long word data of the accumulator (A) and that specified by
the second operand in a bit-by-bit basis and store the result in A.

Assembler format: ANDL A,ear ANDL A,eam

Operation: (A) ← (A) and (Second operand) (Long word logical AND)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Cleared

C: Unchanged

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (d) in the table, see Tables 8.4a and 8.4b.

I S T N Z V C

– – – * * R –

First operand A A

Second operand ear eam

Number of bytes 2 2+

Number of cycles 6 7+(a)

Correction value 0 (d)

101

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: ANDL A,0FFF0H

In this example, the logical AND is taken of the long word data (8252FEACH) of A and the
data (FF55AA00H) at 0FFF0H to 0FFF3H, in a bit-by-bit basis.

Before execution After execution

Memory

F F FFF3
5 5 FFF2
A A FFF1
0 0 FFF0

Memory

F F FFF3
5 5 FFF2
A A FFF1
0 0 FFF0

8 2 5 2 F E A C A 8 2 5 0 A A 0 0 A

CCR × × × × ×
T N Z V C

CCR × 1 0 0 ×
T N Z V C

102

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

ANDW (And Word Data of AH and AL to AL)

Take the logical AND of the word data of AH and that of AL and store the result in AL.

Assembler format: ANDW A

Operation: (AL) ← (AH) and (AL) (Word logical AND)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Cleared

C: Unchanged

Number of bytes: 1

Number of cycles: 2

Correction value: 0

Example: ANDW A

In this example, the logical AND is taken of the word data (0426H) of AH and word data
(AB98H) of AL.

I S T N Z V C

– – – * * R –

0 4 2 6 A B 9 8 A

Before execution

0 4 2 6 0 0 0 0 A

After execution

CCR × × × × ×
T N Z V C

CCR × 0 1 0 ×
T N Z V C

103

MEMO

104

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

ANDW (And Word Data of Destination and Source to
Destination)

Take the logical AND of the word data specified by the first operand and the word data
specified by the second operand and store the result in the first operand.

Assembler format: ANDW A,#imm16

ANDW A,ear ANDW A,eam

ANDW ear,A ANDW eam,A

Operation: (First operand) ← (First operand) and (Second operand) (Word logical AND)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Cleared

C: Unchanged

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (c) in the table, see Tables 8.4a and 8.4b.

I S T N Z V C

– – – * * R –

First operand A A A ear eam

Second operand #i16 ear eam A A

Number of bytes 3 2 2+ 2 2+

Number of cycles 2 3 4+(a) 3 5+(a)

Correction value 0 0 (c) 0 2×(c)

105

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: ANDW 0E001H,A

In this example, the logical AND is taken of the word data (8342H) at addresses 0E001H
and 0E002H and the low-order word data (5963H) of the accumulator.

× × × × 5 9 6 3 A

Before execution

× × × × 5 9 6 3 A

After execution

Memory

8 3 E002

Memory

0 1 E002
4 2 E001 4 2 E001

CCR × × × × ×
T N Z V C

CCR × 0 0 0 ×
T N Z V C

106

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

ASR (Arithmetic Shift Byte Data of Accumulator to Right)

Shift the least significant byte data of the accumulator (A) arithmetically to the right by
the number of bits specified by the second operand. The most significant bit of the
least significant byte data of A is not changed. The bit last shifted out from the least
significant bit is stored in the carry bit (C) of the condition code register (CCR).

Assembler format: ASR A,R0

Operation:

CCR:

I and S: Unchanged

T: Set when the shifted-out data contains one or more “1” bits, cleared otherwise.
Also cleared when the shift amount is zero.

N: Set when the MSB of the shifting result is “1”, cleared otherwise.

Z: Set when the shifting result is zero, cleared otherwise.

V: Unchanged

C: Stores the bit last shifted out from the LSB of A. Cleared when the shift amount
is zero.

Number of bytes: 2

Number of states: 6 when (R0) is equal to 0; otherwise, 5 + (R0)

Correction value: 0

I S T N Z V C

– – * * * – *

A

MSB LSB

1

C T

107

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: ASR A,R0

In this example, the least significant byte data (96H) of A is shifted arithmetically to the
right by three bits.

× × × × × × 9 6A

Before execution

0 3R0

× × × × × × F 2A

After execution

0 3R0CCR × × × × ×
T N Z V C

CCR 1 1 0 × 1

T N Z V C

108

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

ASRL (Arithmetic Shift Long Word Data of Accumulator to
Right)

Shift the long word data of the accumulator (A) arithmetically to the right by the
number of bits specified by the second operand. The most significant bit of A is not
changed. The bit last shifted out from the least significant bit is stored in the carry bit
(C) of the condition code register (CCR).

Assembler format: ASRL A,R0

Operation:

CCR:

I and S: Unchanged

T: Set when the shifted-out data contains one or more “1” bits, cleared otherwise.
Also cleared when the shift amount is zero.

N: Set when the MSB of the shifting result is “1”, cleared otherwise.

Z: Set when the shifting result is zero, cleared otherwise.

V: Unchanged

C: Stores the bit last shifted out from the LSB of A. Cleared when the shift amount
is zero.

Number of bytes: 2

Number of states: 6 when (R0) is equal to 0; otherwise, 6 + (R0)

Correction value: 0

I S T N Z V C

– – * * * – *

A

MSB LSB

1

C T

109

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: ASRL A,R0

In this example, the long word data (12345678H) of A is shifted arithmetically to the right
by two bits.

1 2 3 4 5 6 7 8A

Before execution

0 2R0

0 4 8 D 1 5 9 EA

After execution

0 2R0

T N Z V C
CCR × × × × 0

T N Z V C
CCR 1 0 0 × 0

110

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

ASRW (Arithmetic Shift Word Data of Accumulator to Right)

Shift the low-order word data of the accumulator (A) arithmetically to the right by one
bit. The most significant bit of the low-order word data of A is not changed. The bit
shifted out from the least significant bit is stored in the carry bit (C).

Assembler format: ASRW A

Operation:

CCR:

I and S: Unchanged

T: Set when the old carry value is equal to 1 or the old T value is equal to 1,
cleared otherwise.

N: Set when the MSB of the shifting result is “1”, cleared otherwise.

Z: Set when the shifting result is zero, cleared otherwise.

V: Unchanged

C: Stores the bit shifted out from the LSB of A.

Number of bytes: 1

Number of states: 2

Correction value: 0

Example: ASRW A

In this example, the low-order word data (A096H) of A is shifted arithmetically to the right
by one bit.

I S T N Z V C

– – * * * – *

A

MSB LSB

1

C T

× × × × A 0 9 6 A

Before execution

× × × × D 0 4 B A

After execution

CCR 0 × × × 1
T N Z V C

CCR 1 1 0 × 0

T N Z V C

111

MEMO

112

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

ASRW (Arithmetic Shift Word Data of Accumulator to Right)

Shift the low-order word data of the accumulator (A) arithmetically to the right by the
number of bits specified by the second operand. The most significant bit of the low-
order word data of A is not changed. The bit last shifted out from the least significant
bit is stored in the carry bit (C) of the condition code register (CCR).

Assembler format: ASRW A,R0

Operation:

CCR:

I and S: Unchanged

T: Set when the shifted-out data contains one or more “1” bits, cleared otherwise.
Also cleared when the shift amount is zero.

N: Set when the MSB of the shifting result is “1”, cleared otherwise.

Z: Set when the shifting result is zero, cleared otherwise.

V: Unchanged

C: Stores the bit last shifted out from the LSB of A. Cleared when the shift amount
is zero.

Number of bytes: 2

Number of states: 6 when (R0) is equal to 0; otherwise, 5 + (R0)

Correction value: 0

I S T N Z V C

– – * * * – *

A

MSB LSB

1

C T

113

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: ASRW A,R0

In this example, the low-order word data (A096H) of A is shifted arithmetically to the right
by two bits.

× × × × A 0 9 6A

Before execution

0 2R0

× × × × E 8 2 5 A

After execution

0 2R0CCR × × × × 0
T N Z V C

CCR 0 1 0 × 1

T N Z V C

114

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

BBcc (Branch if Bit Condition satisfied)

Cause a branch if the bit data specified by the first operand satisfies the condition.
Control is transferred to the address resulting from word-adding the sign-extended
data, specified by the second operand, to the address of the instruction following the
BBcc instruction.

Assembler format: BBC <First operand>,rel BBS <First operand>,rel

Operation: If the condition is satisfied: (PC) ← (PC) + <Number of bytes> + rel (Word addition)

If the condition is not satisfied: (PC) ← (PC)+<Number of bytes> (Word addition)

CCR:

I, S, T, and N: Unchanged

Z: Set when the bit data is 0; cleared when 1.

V and C: Unchanged

Number of bytes:

Number of cycles:

Correction value:

*1: “If a branch is taken” indicates the number of cycles assumed if a branch is taken. “If a
branch is not taken” indicates the number of cycles assumed if a branch is not taken.

*2: For an explanation of (b) in the table, see Tables 8.4a and 8.4b.

I S T N Z V C

– – – – * – –

BBcc BBC BBS

Condition Bit data = 0 Bit data = 1

First
operand

addr16:bp dir:bp io:bp addr16:bp dir:bp io:bp

Number of
bytes

5 4 4 5 4 4

Number of
cycles *1

If a branch is
taken: 8

If a branch is
not taken: 7

If a branch is
taken: 8

If a branch is
not taken: 7

If a branch is
taken: 7

If a branch is
not taken: 6

If a branch is
taken: 8

If a branch is
not taken: 7

If a branch is
taken: 8

If a branch is
not taken: 7

If a branch is
taken: 7

If a branch is
not taken: 6

Correction
value *2

(b) (b) (b) (b) (b) (b)

115

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: BBC 1234H:7,12H

In this example, a branch is taken if bit 7 of the data at memory address 1234H is equal to
“0” (condition satisfied).

E 1 0 0 PC

Before execution

Memory

× ×
7 F 1234 : Bit 7 = 0
× ×

E 1 1 7 PC

After execution

Memory

× ×
7 F 1234
× ×

+ (12 + number of bytes 5)

116

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Bcc (Branch relative if Condition satisfied)

Each instruction causes a branch if the condition determined for that instruction is
satisfied. Control is transferred to the address resulting from word-adding the sign-
extended data, specified by the operand, to the address of the instruction following the
BBcc instruction.

Assembler format: BZ/BEQ rel BNZ/BNE rel

BC/BLO rel BNC/BHS rel

BN rel BP rel

BV rel BNV rel

BT rel BNT rel

BLT rel BGE rel

BLE rel BGT rel

BLS rel BHI rel

BRA rel

Operation: If the condition is satisfied: (PC) ← (PC)+2+rel (Word addition)

If the condition is not satisfied: (PC) ← (PC)+2 (Word addition)

CCR:

None of the flags is changed.

Number of bytes: 2

Number of cycles: 3 when branching is not performed, 4 otherwise.

Correction value: 0

Branch instruction

and condition:

I S T N Z V C

– – – – – – –

Bcc
BZ/

BEQ
BNZ/
BNE

BC/
BLO

BNC/
BHS

BN BP BV BNV BT BNT BRA

Condition Z=1 Z=0 C=1 C=0 N=1 N=0 V=1 V=0 T=1 T=0
Always
satisfied

Bcc BLT BGE BLE BGT BLS BHI

Condition V xor N = 1 V xor N = 0
(V xor N) or

Z = 1
(V xor N) or

Z = 0
C or Z = 1 C or Z = 0

117

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: BHI 50H

In this example, a branch is taken if either C or Z or both of the condition code register
(CCR) are equal to “0” (condition satisfied).

PC PC+(2+50)

CCR CCRC or Z = 0, then

Before execution After execution

E 2 0 0

0 1 0 1 0

T N Z V C

E 2 5 2

0 1 0 1 0

T N Z V C

118

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

CALL (Call Subroutine)

Cause a branch to the address specified by the operand. By executing the RET
instruction in the subroutine to which control has been transferred, control returns to
the instruction following the CALL instruction.

Assembler format: CALL @ear CALL @eam

CALL addr16

Operation: (SP) ← (SP)–2 (Word subtraction), ((SP)) ← (PC)+<Number of bytes>

(PC) ← <Operand>

CCR:

None of the flags is changed.

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (c) in the table, see Tables 8.4a and 8.4b.

Example: CALL @RW0

I S T N Z V C

– – – – – – –

Operand @ear @eam ad16

Number of bytes 2 2+ 3

Number of cycles 6 7+(a) 6

Correction value (c) 2×(c) (c)

E 5 5 8PC

Before execution

Memory

D C F341
0 8 F340

× × 0124

F 3 4 0RW0 0 1 2 4SP

× × 0123
× × 0122

SP

D C 0 8PC

After execution

Memory

D C F341
0 8 F340

× × 0124

F 3 4 0RW0 0 1 2 2SP

E 5 0123
5 A 0122SP

119

MEMO

120

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

CALLP (Call physical Address)

Cause a branch to the physical address specified by the operand. The program bank
register (PCB) stores the most significant byte of the data specified by the operand. By
executing the RETP instruction in the subroutine to which control has been
transferred, control returns to the instruction following the CALLP instruction.

Assembler format: CALLP @ear CALLP @eam

CALLP addr24

Operation: (SP) ← (SP)–2 (Word subtraction), ((SP)) ← (PCB) (Zero extension)

(SP) ← (SP)–2 (Word subtraction), ((SP)) ← (PC)+<Number of bytes>

(PCB) ← Physical address to branch to (High-order byte)

(PC) ← Physical address to branch to (Low-order word)

CCR:

None of the flags is changed.

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a), (b), and (c) in the table, see Tables 8.4a and 8.4b.

I S T N Z V C

– – – – – – –

Operand @ear @eam ad24

Number of bytes 2 2+ 4

Number of cycles 10 11+(a) 10

Correction value 2×(c) 3×(c)+(b) 2×(c)

121

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: CALLP 080711H

In this example, the most significant byte (08H) of the operand is set in the program bank
register (PCB).

4 3 4 5PC

Before execution

Memory

× × 15F900
× × 15F8FF
× × 15F8FE

A DPCB

F 9 0 0SP

× × 15F8FD
× × 15F8FC

SP

1 5USB

0 7 1 1PC

After execution

Memory

× × 15F900
0 0 15F8FF
A D 15F8FE

0 8PCB

F 8 F CSP

4 3 15F8FD
4 9 15F8FCSP

1 5USB

CCR × 0 × × × × ×
I S T N Z V C

CCR × 0 × × × × ×
I S T N Z V C

122

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

CALLV (Call Vectored Subroutine)

Cause a branch to the address pointed to by the interrupt vector specified by the
operand. By executing the RET instruction in the subroutine to which control has been
transferred, control returns to the instruction following the CALLV instruction. The
RET instruction is the same as that used with the CALL instruction.

Assembler format: CALLV #vct4

Operation: (SP) ← (SP)–2 (Word subtraction) ((SP)) ← (PC) + 1

(PC) ← Vector address

Note: When the value of the program bank register (PCB) is equal to FFH, the vector area is
also used as the vector area for INT #vct (#0 to #7). Caution must, therefore, be
exercised when the area is used. (See Table 9.)

CCR:

None of the flags is changed.

Number of bytes: 1

Number of cycles: 7

Correction value: 2×(c)

For an explanation of (c), see Tables 8.4a and 8.4b.

Example: CALLV #15

I S T N Z V C

– – – – – – –

F 4 A 7PC

Before execution

Memory

E 1 FFE1
5 4 FFE0

× × 0102

0 1 0 2SP

× × 0101
× × 0100

SP

E 1 5 4PC

After execution

Memory

E 1 FFE1
5 4 FFE0

× × 0102

0 1 0 0SP

F 4 0101
A 8 0100SP

123

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Table 9 CALLV Vector List

Note: XX is replaced by the value of the PCB register.

Instruction Vector address L Vector address H

CALLV #0 XXFFFEH XXFFFFH

CALLV #1 XXFFFCH XXFFFDH

CALLV #2 XXFFFAH XXFFFBH

CALLV #3 XXFFF8H XXFFF9H

CALLV #4 XXFFF6H XXFFF7H

CALLV #5 XXFFF4H XXFFF5H

CALLV #6 XXFFF2H XXFFF3H

CALLV #7 XXFFF0H XXFFF1H

CALLV #8 XXFFEEH XXFFEFH

CALLV #9 XXFFECH XXFFEDH

CALLV #10 XXFFEAH XXFFEBH

CALLV #11 XXFFE8H XXFFE9H

CALLV #12 XXFFE6H XXFFE7H

CALLV #13 XXFFE4H XXFFE5H

CALLV #14 XXFFE2H XXFFE3H

CALLV #15 XXFFE0H XXFFE1H

124

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

CBNE (Compare Byte Data and Branch if not equal)

Perform byte comparison on the first and second operands (8-bit immediate data) and
cause a branch if the first and second operands are not equal. Control is transferred to
the address equal to the address of the instruction following the CBNE instruction plus
the word value resulting from sign-extending the third operand. A branch is not taken
if the first and second operands are equal.

When the first operand is @PC + disp16, the operand address is equal to the “address
of the location containing the machine instruction for the CBNE instruction + 4 +
disp16”, not the “address of the location containing the machine instruction for the
instruction following the CBNE instruction 4 + disp16”.

Assembler format: CBNE A,#imm8,rel

CBNE ear,#imm8,rel

CBNE eam,#imm8,rel

Operation: (First operand)≠imm8 (Byte comparison) : (PC) ← (PC)+<Number of bytes>+rel

(First operand)=imm8 (Byte comparison) : (PC) ← (PC)+<Number of bytes>

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the compare operation result is “1”, cleared otherwise.

Z: Set when (First operand) = imm8, cleared otherwise.

V: Set when an overflow has occurred as a result of the compare operation,
cleared otherwise.

C: Set when a borrow has occurred as a result of the compare operation,
cleared otherwise.

Number of bytes:

Number of cycles:

Correction value:

*1: @Rwj+ addressing cannot be used in eam. If such code is executed, +4 is added to
the contents of Rwj.

*2: For an explanation of (a) and (b) in the table, see Tables 8.4a and 8.4b.

I S T N Z V C

– – – * * * *

First operand A ear eam*1

Number of bytes 3 4 4+

Number of cycles*2

If a branch is
taken: 5
If a branch is not
taken: 4

If a branch is
taken: 13
If a branch is not
taken: 12

If a branch is
taken: 7+(a)
If a branch is not
taken: 6+(a)

Correction value*2 0 0 (b)

125

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: CBNE A,#0F4H,55H

In this example, (First operand) ≠ Second operand (8-bit immediate data).

× × × × 0 0 F 3A

Before execution

E 3 1 0PC

× × × × 0 0 F 3 A

After execution

E 3 6 8 PC

F3H≠F4H

+(55H+Number of bytes: 3)

CCR × × × × ×
T N Z V C

CCR × 1 0 0 1

T N Z V C

126

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

CLRB (Clear Bit)

Clear the bit specified by bp to zero, in the memory location specified by the operand.

Assembler format: CLRB dir:bp

CLRB io:bp

CLRB addr16:bp

Operation: (Operand) b ← 0 (Bit transfer)

CCR:

None of the flags is changed.

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (b) in the table, see Tables 8.4a and 8.4b.

Example: CLRB 0AA55H:3

In this example, bit 3 of the data (FFH) at address AA55H is cleared to zero.

I S T N Z V C

– – – – – – –

Operand dir:bp io:bp ad16:bp

Number of bytes 3 3 4

Number of cycles 7 7 7

Correction value 2×(b) 2×(b) 2×(b)

Before execution

Memory

× ×
F F AA55
× ×

After execution

Memory

× ×
F 7 AA55
× ×

127

MEMO

128

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

CMP (Compare Byte Data of Destination and Source)

Compare the byte data specified by the first operand with that specified by the second
operand and set the flag changes in the condition code register (CCR). The data
specified by the first operand and that by the second are not changed.

If only the accumulator (A) is specified by an operand, AH and AL are compared.

Assembler format: (1) CMP A,#imm8

CMP A,ear CMP A,eam

(2) CMP A

Operation: (1) (First operand)–(Second operand) (Byte comparison)

(2) (AH)–(AL) (Byte comparison)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise .

V: Set when an overflow has occurred as a result of the operation, cleared
otherwise.

C: Set when a borrow has occurred as a result of the operation, cleared
otherwise.

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (b) in the table, see Tables 8.4a and 8.4b.

I S T N Z V C

– – – * * * *

First operand A A A AH

Second operand #im8 ear eam AL

Number of bytes 2 2 2+ 1

Number of cycles 2 2 3+(a) 1

Correction value 0 0 (b) 0

129

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: CMP A,#7FH

In this example, the least significant byte data (22H) of A is compared with 7FH.

× × × × A 0 2 2 A

Before execution

× × × × A 0 2 2A

After execution

CCR × × × × ×
T N Z V C

CCR × 1 0 0 1

T N Z V C

130

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

CMPL (Compare Long Word Data of Destination and Source)

Compare the long word data specified by the first operand with that specified by the
second operand and set the result in the condition code register (CCR). The data
specified by the first operand and that specified by the second are not changed.

Assembler format: CMPL A,#imm32

CMPL A,ear CMPL A,eam

Operation: (First operand)–(Second operand) (Long word comparison)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Set when an overflow has occurred as a result of the operation, cleared
otherwise.

C: Set when a borrow has occurred as a result of the operation, cleared
otherwise.

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (d) in the table, see Tables 8.4a and 8.4b.

Example: CMPL A,#12345678H

I S T N Z V C

– – – * * * *

First operand A A A

Second operand #i32 ear eam

Number of bytes 5 2 2+

Number of cycles 3 6 7+(a)

Correction value 0 0 (d)

1 2 3 4 5 6 7 8 A

Before execution

1 2 3 4 5 6 7 8 A

After execution

CCR × × × × ×
T N Z V C

CCR × 0 1 0 0

T N Z V C

131

MEMO

132

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

CMPW (Compare Word Data of Destination and Source)

Compare the word data specified by the first operand with that specified by the second
operand and set the result in the condition code register (CCR). The data specified by
the first operand and that specified by the second are not changed.

If only A is specified by an operand, AH and AL are compared.

Assembler format: (1) CMPW A,#imm16

CMPW A,ear CMPW A,eam

(2) CMPW A

Operation: (1) (First operand)–(Second operand) (Word comparison)

(2) (AH)–(AL) (Word comparison)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Set when an overflow has occurred as a result of the operation, cleared
otherwise.

C: Set when a borrow has occurred as a result of the operation, cleared
otherwise.

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (c) in the table, see Tables 8.4a and 8.4b.

I S T N Z V C

– – – * * * *

First operand A A A AH

Second operand #i16 ear eam AL

Number of bytes 3 2 2+ 1

Number of cycles 2 2 3+(a) 1

Correction value 0 0 (c) 0

133

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: CMPW A,RW0

In this example, the low-order word data (ABCDH) of A is compared with the data
(ABCCH) specified by RW0.

× × × × A B C DA

Before execution

A B C CRW0

× × × × A B C DA

After execution

A B C CRW0

CCR × × × × ×
T N Z V C

CCR × 0 0 0 0

T N Z V C

134

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

CWBNE (Compare Word Data and Branch if not equal)

Perform word comparison on the first and second operands (16-bit immediate data)
and cause a branch if the first and second operands are not equal. Control is
transferred to the address equal to the address of the instruction following the CWBNE
instruction plus the word data resulting from sign-extending the third operand. A
branch is not taken if the first and second operands are equal.

When the first operand is @PC + disp16, the operand address is equal to the “address
of the location containing the machine instruction for the CWBNE instruction + 4 +
disp16,” not the “address of the location containing the machine instruction for the
instruction following the CWBNE instruction + disp16.”

Assembler format: CWBNE A,#imm16,rel

CWBNE ear,#imm16,rel

CWBNE eam,#imm16,rel

Operation: (First operand)≠imm16 (Word comparison) : (PC) ← (PC)+<Number of bytes>+rel

(First operand)=imm16 (Word comparison) : (PC) ← (PC)+<Number of bytes>

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the comparison result is “1”, cleared otherwise.

Z: Set when (First operand) = #imm16, cleared otherwise.

V: Set when an overflow has occurred as a result of the compare operation,
cleared otherwise.

C: Set when a borrow has occurred as a result of the compare operation,
cleared otherwise.

Number of bytes:

Number of cycles:

Correction value:

*1: @Rwj+ addressing cannot be used in eam. If such code is executed, +4 is added to
the contents of Rwj.

*2: For an explanation of (a) and (c) in the table, see Tables 8.4a and 8.4b.

I S T N Z V C

– – – * * * *

First operand A ear eam*1

Number of bytes 4 5 5+

Number of cycles*2

If a branch is
taken: 5
If a branch is not
taken: 4

If a branch is
taken: 8
If a branch is not
taken: 7

If a branch is
taken: 7+(a)
If a branch is not
taken: 6+(a)

Correction value*2 0 0 (c)

135

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: CWBNE A,#0E5E5H,30H

In this example, (First operand) ≠ imm16.

× × × × 5 E E 5A

Before execution

D 8 5 6PC

× × × × 5 E E 5 A

After execution

D 8 8 A PC

CCR × × × × ×
T N Z V C

CCR × 0 0 0 0

T N Z V C

136

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

DBNZ (Decrement Byte Data and Branch if not Zero)

Decrement the data specified by the first operand by one byte, and if the result is not
equal to zero, cause a branch. Control is transferred to the address equal to the
address of the instruction following the DBNZ instruction plus the word data resulting
from sign-extending the data specified by the second operand. If the decrement result
is equal to zero, control is transferred to the next instruction.

When the first operand is @PC + disp16, the operand address is equal to the “address
of the location containing the machine instruction for the DBNZ instruction + 4 +
disp16,” not the “address of the location containing the machine instruction for the
instruction following the DBNZ instruction + disp16”.

Assembler format: DBNZ ear,rel DBNZ eam,rel

Operation: (ea) ← (ea)–1 (Byte subtraction)

if (ea) ≠ 0 : (PC) ← (PC)+<Number of bytes>+rel

if (ea) = 0 : (PC) ← (PC)+<Number of bytes>

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Set when an overflow has occurred as a result of the operation, cleared
otherwise.

C: Unchanged

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (b) in the table, see Tables 8.4a and 8.4b.

I S T N Z V C

– – – * * * –

First operand ear eam

Number of bytes 3 3+

Number of cycles

If a branch is
taken: 7
If a branch is not
taken: 6

If a branch is
taken: 8+(a)
If a branch is not
taken: 7+(a)

Correction value 0 2×(b)

137

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: DBNZ @RW0+2,40H

In this example, (First operand) - 1 ≠ 0.

E 3 5 8 PC

Before execution

Memory

0 3 0122
× × 0121
× × 0120

0 1 2 0 RW0

RW0+2

E 3 9 C PC

After execution

Memory

0 2 0122
× × 0121
× × 0120

0 1 2 0 RW0

RW0+2

CCR 0 0 0 0 1
T N Z V C

CCR 0 0 1 0 1
T N Z V C

138

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

DEC (Decrement Byte Data)

Decrement the byte data specified by the operand by one and store the result in the
operand.

Assembler format: DEC ear DEC eam

Operation: (ea) ← (ea)–1 (Byte subtraction)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Set when an overflow has occurred as a result of the operation, cleared
otherwise.

C: Unchanged

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (b) in the table, see Tables 8.4a and 8.4b.

Example: DEC R1

I S T N Z V C

– – – * * * –

Operand ear eam

Number of bytes 2 2+

Number of cycles 3 5+(a)

Correction value 0 2×(b)

Before execution

8 0R1

After execution

7 FR1

CCR × 0 0 1 ×
T N Z V C

CCR × × × × ×
T N Z V C

139

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

DECL (Decrement Long Word Data)

Decrement the long word data specified by the operand by one and store the result in
the operand.

Assembler format: DECL ear DECL eam

Operation: (ea) ← (ea)–1 (Long word subtraction)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Set when an overflow has occurred as a result of the operation, cleared
otherwise.

C: Unchanged

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (d) in the table, see Tables 8.4a and 8.4b.

Example: DECL RL0

I S T N Z V C

– – – * * * –

Operand ear eam

Number of bytes 2 2+

Number of cycles 7 9+(a)

Correction value 0 2×(d)

0 0 0 0 1 0 0 0 RL0

Before execution

0 0 0 0 0 F F F RL0

After execution

CCR × × × × ×
T N Z V C

CCR × 0 0 0 ×
T N Z V C

140

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

DECW (Decrement Word Data)

Decrement the word data specified by the operand by one and store the result in the
operand.

Assembler format: DECW ear DECW eam

Operation: (ea) ← (ea)–1 (Word subtraction)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Set when an overflow has occurred as a result of the operation, cleared
otherwise.

C: Unchanged

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (c) in the table, see Tables 8.4a and 8.4b.

Example: DECW @RW0+1000H

I S T N Z V C

– – – * * * –

Operand ear eam

Number of bytes 2 2+

Number of cycles 3 5+(a)

Correction value 0 2×(c)

Before execution

Memory

0 0 7781
0 1 7780
× × 777F

6 7 8 0 RW0

RW0+1000H

After execution

Memory

0 0 7781
0 0 7780
× × 777F

6 7 8 0 RW0

RW0+1000H

CCR × × × × ×
T N Z V C

CCR × 0 0 1 ×
T N Z V C

141

MEMO

142

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

DIV (Divide Word Data by Byte Data)

Divide the word data specified by the first operand by the byte data specified by the
second operand and store the quotient (byte data) in the first operand and the
remainder (byte data) in the second operand. The operation assumes that the values
are signed ones.

If only A is specified by an operand, the word data of AH is divided by the byte data of
AL and the quotient (byte data) is stored in AL and the remainder (byte data) in AH.
The operation assumes that the values are signed ones.

If division by zero occurs, the second operand or AL retains the value it had
immediately before the instruction was executed. If an overflow occurs, the contents
of AL are destroyed.

Assembler format: (1) DIV A,ear DIV A,eam

(2) DIV A

Operation: (1) Word (A)/Byte (ea), Quotient → Byte (A), Remainder → Byte (ea)

(2) Word (AH)/Byte (AL), Quotient → Byte (AL), Remainder → Byte (AH)

CCR:

I, S, T, N, and Z: Unchanged

V: Set when an overflow has occurred as a result of the operation or the
divisor is zero, cleared otherwise.

C: Set when the divisor is zero, cleared otherwise.

Number of bytes:

Number of cycles:

Correction value:

*: (b) when division by zero or an overflow occurs; 2 × (b) when the instruction
terminated normally.

For an explanation of (a) and (b) in the table, see Tables 8.4a and 8.4b.

I S T N Z V C

– – – – – * *

Second operand DIV A DIV A, ear DIV A, eam

Number of bytes 2 2 2+

Number of cycles

Division by zero: 3
Overflow: 8 or 18
Normal termination:
18

Division by zero: 4
Overflow: 11 or 22
Normal termination:
23

Division by zero: 5+(a)
Overflow: 12+(a) or
23+(a)
Normal termination:
24+(a)

Correction value 0 0 *

143

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: DIV A

1 3 5 7 0 0 A AA

Before execution

0 0 3 1 E C D 8A

After execution

AH AHAL AL

CCR × × × × ×
T N Z V C

CCR × × × 0 0

T N Z V C

144

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

DIVW (Divide Long Word Data by Word Data)

Divide the long word data specified by the first operand (A) by the word data specified
by the second operand and store the quotient (word data) in A and the remainder (word
data) in the second operand. The operation assumes that the values are signed ones.

If division by zero occurs, the second operand or AL retains the value it had
immediately before the instruction was executed. If an overflow occurs, the contents
of AL are destroyed.

Assembler format: DIVW A,ear DIVW A,eam

Operation: Long word (A)/Word (ea), Quotient → Word (A), Remainder → Word (ea)

CCR:

I, S, T, N, and Z: Unchanged

V: Set when an overflow has occurred as a result of the operation or the
divisor is zero, cleared otherwise.

C: Set when the divisor is zero, cleared otherwise.

Number of bytes:

Number of cycles:

Correction value:

*: (c) when division by zero or an overflow occurs; 2 × (c) when the instruction
terminated normally.

For an explanation of (a) in the table and (c) in*, see Tables 8.4a and 8.4b.

I S T N Z V C

– – – – – * *

Second operand DIVW A, ear DIVW A, eam

Sign of the dividend Plus Minus Plus Minus

Number of bytes 2 2 2+ 2+

Number of cycles

Division by zero: 4
Overflow: 11 or 30
Normal termination:
31

Division by zero: 4
Overflow: 12 or 31
Normal termination:
32

Division by zero: 5+(a)
Overflow: 12+(a) or
31+(a)
Normal termination:
32+(a)

Division by zero: 5+(a)
Overflow: 12+(a) or
32+(a)
Normal termination:
33+(a)

Correction value 0 0 * *

145

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: DIVW A,7254H

0 0 0 0 1 3 5 7 A

Before execution

0 0 0 0 0 0 1 D A

After execution

Memory

0 0 7255

Memory

0 0 7255
A A 7254 1 5 7254

AH AL AH AL

CCR × × × × ×
T N Z V C

CCR × × × 0 0

T N Z V C

146

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

DIVU (Divide unsigned Word Data by unsigned Byte Data)

Divide the word data specified by the first operand by the byte data specified by the
second operand and store the quotient (byte data) in the first operand and the
remainder (byte data) in the second operand. The operation assumes that the values
are signed ones.

If only A is specified by an operand, the word data of AH is divided by the byte data of
AL and the quotient (byte data) is stored in AL and the remainder (byte data) in AH.
The operation assumes that the values are signed ones.

If an overflow or division by zero occurs, the second operand or AL retains the value it
had immediately before the instruction was executed.

Assembler format: (1) DIVU A,ear DIVU A,eam

(2) DIVU A

Operation: (1) Word (A)/Byte (ea), Quotient → Byte (A), Remainder → Byte (ea)

(2) Word (AH)/Byte (AL), Quotient → Byte (AL), Remainder → Byte (AH)

CCR:

I, S, T, N, and Z: Unchanged

V: Set when an overflow has occurred as a result of the operation or the
divisor is zero, cleared otherwise.

C: Set when the divisor is zero, cleared otherwise.

Number of bytes:

Number of cycles:

Correction value:

*: (b) when division by zero or an overflow occurs; 2 × (b) when the instruction
terminated normally.

For an explanation of (a) in the table and (b) in*, see Tables 8.4a and 8.4b.

I S T N Z V C

– – – – – * *

Assembler format DIVU A DIVU A, ear DIVU A, eam

Number of bytes 1 2 2+

Number of cycles

Division by zero: 3
Overflow: 7
Normal termination:
15

Division by zero: 4
Overflow: 8
Normal termination:
16

Division by zero: 6+(a)
Overflow: 9+(a)
Normal termination:
19+(a)

Correction value 0 0 *

147

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: DIVU A

1 3 5 7 0 0 A A A

Before execution

0 0 1 5 0 0 1 DA

After execution

CCR × × × × ×
T N Z V C

CCR × × × 0 0

T N Z V C

148

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

DIVUW (Divide unsigned Long Word Data by unsigned Word
Data)

Divide the long word data specified by the first operand (A) by the word data specified
by the second operand and store the quotient (word data) in A and the remainder (word
data) in the second operand. The operation assumes that the values are unsigned
ones.

If an overflow or division by zero occurs, the second operand or AL retains the value it
had immediately before the instruction was executed.

Assembler format: DIVUW A,ear DIVUW A,eam

Operation: Long Word (A)/Word (ea), Quotient → Word (A), Remainder → Word (ea)

CCR:

I, S, T, N, and Z: Unchanged

V: Set when an overflow has occurred as a result of the operation or the
divisor is zero, cleared otherwise.

C: Set when the divisor is zero, cleared otherwise.

Number of bytes:

Number of cycles:

Correction value:

*: (c) when division by zero or an overflow occurs; 2 × (c) when the instruction
terminated normally.

For an explanation of (a) in the table and (c) in*, see Tables 8.4a and 8.4b.

I S T N Z V C

– – – – – * *

Assembler format DIVU A, ear DIVU A, eam

Number of bytes 2 2+

Number of cycles

Division by zero: 4
Overflow: 7
Normal termination:
22

Division by zero:
6+(a)
Overflow: 8+(a)
Normal termination:
26+(a)

Correction value 0 *

149

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: DIVUW A,7254H

0 0 0 0 1 3 5 7 A

Before execution

0 0 0 0 0 0 1 DA

After execution

Memory

0 0 7255

Memory

0 0 7255
A A 7254 1 5 7254

CCR × × × × ×
T N Z V C

CCR × × × 0 0

T N Z V C

150

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

DWBNZ (Decrement Word Data and Branch if not Zero)

Decrement the data specified by the first operand by one word, and if the result is not
equal to zero, cause a branch. Control is transferred to the address equal to the
address of the instruction following the DWBNZ instruction plus the word data
resulting from sign-extending the data specified by the second operand. If the
decrement result is equal to zero, control is transferred to the instruction following the
DWBNZ instruction.

When the first operand is @PC + disp16, the operand address is equal to the “address
of the location containing the machine instruction for the DWBNZ instruction + 4 +
disp16,” not the “address of the location containing the machine instruction for the
instruction following the DWBNZ instruction + disp16.”

Assembler format: DWBNZ ear,rel DWBNZ eam,rel

Operation: (First operand) ← (First operand)–1 (Word subtraction)

When (First operand)≠0, (PC) ← (PC)+<Number of bytes>+second operand

(PC) ← (PC)+<Number of bytes>

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the comparison result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Set when an overflow has occurred as a result of the operation, cleared
otherwise.

C: Unchanged

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (c) in the table, see Tables 8.4a and 8.4b.

I S T N Z V C

– – – * * * –

Second operand ear eam

Number of bytes 3 3+

Number of cycles

If a branch is
taken: 7
If a branch is not
taken: 6

If a branch is
taken: 8+(a)
If a branch is not
taken: 7+(a)

Correction value 0 2×(c)

151

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: DWBNZ RW0,30H

In this example, (First operand) – 1 = 0.

F 8 2 0PC

Before execution

0 0 0 1RW0

F 8 2 3PC

After execution

0 0 0 0RW0

CCR × × × × ×
T N Z V C

CCR × 0 0 0 ×
T N Z V C

152

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

EXT (Sign Extend from Byte Data to Word Data)

Extend the least significant byte data of A to word data as a signed binary number.

Assembler format: EXT

Operation: When bit 7 of A=0, bits 8 to 15 of A ← 00H

When bit 7 of A≠0, bits 8 to 15 of A ← FFH

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the sign-extended data is “1”, cleared otherwise.

Z: Set when the sign-extended data is zero, cleared otherwise.

V and C: Unchanged

Number of bytes: 1

Number of cycles: 1

Correction value: 0

Example: EXT

In this example, the most significant bit of the least significant byte data (80H) of A is equal
to 1, and FFH is set in bits 8 to 15 of A to extend the byte data.

I S T N Z V C

– – – * * – –

× × × × × × 8 0 A

Before execution

× × × × F F 8 0 A

After execution

CCR × × × × ×
T N Z V C

CCR × 1 0 × ×
T N Z V C

153

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

EXTW (Sign Extend from Word Data to Long Word Data)

Extend the low-order word data of A to long word data as a signed binary number.

Assembler format: EXTW

Operation: When bit 15 of A=0, bits 16 to 31 of A ← 0000H

When bit 15 of A≠0, bits 16 to 31 of A ← FFFFH

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the sign-extended data is “1”, cleared otherwise.

Z: Set when the sign-extended data is zero, cleared otherwise.

V and C: Unchanged

Number of bytes: 1

Number of cycles: 2

Correction value: 0

Example: EXTW

In this example, the most significant bit of the low-order word data (FF80H) of A is equal to 1,
and FFFFH is set in bits 16 to 32 of A to extend the low-order word data.

I S T N Z V C

– – – * * – –

× × × × F F 8 0 A

Before execution

F F F F F F 8 0 A

After execution

CCR × × × × ×
T N Z V C

CCR × 1 0 × ×
T N Z V C

154

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

FILS (Fill String Byte)

 Transfer the contents of AL to the RW0-byte area that starts from the address whose
high-order eight bits are specified by the bank register specified by <bank> and whose
low-order 16 bits are specified by the contents of AH.

If RW0 is equal to zero, transfer is not performed. If an interrupt occurs during the
execution of the instruction, the execution of the instruction is suspended. After the
interrupt has been handled, the execution of the instruction is resumed.

Four types of registers PCB, DTB, ADB, and SPB can be specified by <bank>. If
<bank> is omitted, DTB is assumed.

Assembler format: FILS [I] [<bank>]

Operation: While RW0 ≠ 0, the following operation is repeated:
((AH)) ← (AL) (Byte transfer), (AH) ← (AH)+1,
(RW0) ← (RW0)–1

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the transferred data is “1”, cleared otherwise.

Z: Set when the transferred data is zero, cleared otherwise.

V and C: Unchanged

Number of bytes: 2

Number of cycles: 6×(RW0)+6

Correction value: (b)×(RW0)

For an explanation of (b) , see Tables 8.4a and 8.4b.

I S T N Z V C

– – – * * – –

155

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: FILS

0 1 0 0RW0

Before execution

Memory

× × 94BD00
× × 94BCFF
× × 94BCFE

9 4DTB

× × 94BC02
× × 94BC01

AH

B C 0 0 0 0 E 5
AH AL

× × 94BC00

0 0 0 0RW0

Memory

× × 94BD00
E 5 94BCFF
E 5 94BCFE

9 4DTB

E 5 94BC02
E 5 94BC01

AH

B D 0 0 0 0 E 5
AH AL

E 5 94BC00

After execution

.

CCR × × × × ×
T N Z V C

CCR × 1 0 × ×
T N Z V C

156

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

FILSW (Fill String Word)

Transfer the contents of AL to the RW0-word area that starts from the address whose
high-order eight bits are specified by the bank register specified by <bank> and whose
low-order 16 bits are specified by the contents of AH.

If RW0 is equal to zero, transfer is not performed. If an interrupt occurs during the
execution of the instruction, the execution of the instruction is suspended. After the
interrupt has been handled, the execution of the instruction is resumed.

Four types of registers PCB, DTB, ADB, and SPB can be specified by <bank>. If
<bank> is omitted, DTB is assumed.

Assembler format: FILSW [I] [<bank>]

Operation: While RW0 ≠ 0, the following operation is repeated:
((AH)) ← (AL) (Word transfer), (AH) ← (AH)+2,
(RW0) ← (RW0)–1

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the transferred data is “1”, cleared otherwise.

Z: Set when the transferred data is zero, cleared otherwise.

V and C: Unchanged

Number of bytes: 2

Number of cycles: 6×(RW0)+6

Correction value: (c)×(RW0)

For an explanation of (c), see Tables 8.4a and 8.4b.

I S T N Z V C

– – – * * – –

157

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: FILSW ADB

0 0 8 0RW0

Before execution

Memory

× × 49ACFF
× × 49ACFE
× × 49ACFD

4 9ADB

× × 49AC00
× × 49ABFF

AH

A B F E E 5 5 E
AH AL

× × 49ABFE

0 0 0 0RW0

Memory

× × 49ACFF
× × 49ACFE
E 5 49ACFD

4 9ADB

5 E 49AC00
E 5 49ABFF

AH

A C F E E 5 5 E
AH AL

5 E 49ABFE

After execution

...

CCR × × × × ×
T N Z V C

CCR × 0 0 × ×
T N Z V C

158

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

INC (Increment Byte Data (Address Specification))

Increment the byte data specified by the operand by one and store the result in the
operand.

Assembler format: INC ear INC eam

Operation: (Operand) ← (Operand)+1 (Byte increment)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Set when an overflow has occurred as a result of the operation, cleared
otherwise.

C: Unchanged

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (b) in the table, see Tables 8.4a and 8.4b.

Example: INC R0

I S T N Z V C

– – – * * * –

Operand ear eam

Number of bytes 2 2+

Number of cycles 3 5+(a)
Correction value 0 2×(b)

Before execution

F FR0

After execution

0 0R0

CCR × × × × ×
T N Z V C

CCR × 0 1 0 ×
T N Z V C

159

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

INCL (Increment Long Word Data)

Increment the long word data specified by the operand by one and store the result in
the operand.

Assembler format: INCL ear INCL eam

Operation: (Operand) ← (Operand)+1 (Long word increment)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Set when an overflow has occurred as a result of the operation, cleared
otherwise.

C: Unchanged

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (d) in the table, see Tables 8.4a and 8.4b.

Example: INCL RL0

I S T N Z V C

– – – * * * –

Operand ear eam

Number of bytes 2 2+

Number of cycles 7 9+(a)
Correction value 0 2×(d)

7 F F F F F F FRL0

Before execution

8 0 0 0 0 0 0 0A

After execution

CCR × × × × ×
T N Z V C

CCR × 1 0 1 ×
T N Z V C

160

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

INCW (Increment Word Data)

Increment the word data specified by the operand by one and store the result in the
operand.

Assembler format: INCW ear INCW eam

Operation: (Operand) ← (Operand)+1 (Word increment)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Set when an overflow has occurred as a result of the operation, cleared
otherwise.

C: Unchanged

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (c) in the table, see Tables 8.4a and 8.4b.

Example: INCW @RW0+

I S T N Z V C

– – – * * * –

Operand ear eam

Number of bytes 2 2+

Number of cycles 3 5+(a)
Correction value 0 2×(c)

Before execution

Memory

× × 0357
× × 0356
0 1 0355

0 3 5 4 RW0

RW0

After execution

0 3 5 6 RW0

0 1 0354

Memory

× × 0357
× × 0356
0 1 0355

RW0

0 2 0354

CCR × × × × ×
T N Z V C

CCR × 0 0 0 ×
T N Z V C

161

MEMO

162

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

INT (Software Interrupt)

Cause a branch to the interrupt handling routine at the specified address in the bank
0FFH. By executing the RETI instruction in the interrupt handling routine to which
control has been transferred, control returns to the instruction following this
instruction.

Assembler format: INT addr16

Operation: (SSP) ← (SSP)–2, ((SSP)) ← (AH), (SSP) ← (SSP)–2, ((SSP)) ← (AL)

(SSP) ← (SSP)–2, ((SSP)) ← (DPR) : (ADB)(DPR and ADB are saved as a set, DPR as
the high-order byte and ADB as the low-
order byte.)

(SSP) ← (SSP)–2, ((SSP)) ← (DTB) : (PCB)(DTB and PCB are saved as a set, DTB as
the high-order byte and PCB as the low-
order byte.)

(SSP) ← (SSP)–2, ((SSP)) ← (PC+3), (SSP) ← (SSP)–2, ((SSP)) ← (PS)

(S) ← 1, (I) ← 0, (PCB) ← 0FFH, (PC) ← addr16

CCR:

I: Cleared

S: Set

T, N, Z, V, and C: Unchanged

Number of bytes: 3

Number of cycles: 16

Correction value: 6×(c)

For an explanation of (c), see Tables 8.4a and 8.4b.

I S T N Z V C

R S – – – – –

163

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: INT 020F2H

7 7 6 6
PC

9 9
DTB

F F E E D D C C
SA

Memory
038000

× × 037FFF
× × 037FFE

SSP

8 8
PCB

B B
DPR

A A
ADB

0 3
ILM

1 0
RP

0 3
SSB

8 0 0 0
SSP

× × 037FFD
× × 037FFC
× × 037FFB
× × 037FFA
× × 037FF9
× × 037FF8
× × 037FF7
× × 037FF6
× × 037FF5
× × 037FF4

Before execution

2 0 F 2
PC

9 9
DTB

F F E E D D C C
SA

Memory
038000

F F 037FFF
E E 037FFE

SSP

F F
PCB

B B
DPR

A A
ADB

0 3
ILM

1 0
RP

0 3
SSB

7 F F 4
SSP

D D 037FFD
C C 037FFC
B B 037FFB
A A 037FFA
9 9 037FF9
8 8 037FF8
7 7 037FF7
6 9 037FF6
7 0 037FF5
8 5 037FF4

After execution

CCR CCR

I S T N Z V C
0 1 0 0 1 0 1

I S T N Z V C
0 0 0 0 1 0 1

164

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

INT (Software Interrupt (Vector Specification))

Cause a branch to the interrupt handling routine pointed to by the interrupt vector
specified by the operand.

Assembler format: INT #vct8

Operation: (SSP) ← (SSP)–2, ((SSP)) ← (AH), (SSP) ← (SSP)–2, ((SSP) ← (AL)

(SSP) ← (SSP)–2, ((SSP)) ← (DPR) : (ADB) (DPR and ADB are saved as a set, DPR as
the high-order byte and ADB as the low-
order byte.)

(SSP) ← (SSP)–2, ((SSP)) ← (DTB) : (PCB) (DTB and PCB are saved as a set, DTB as
the high-order byte and PCB as the low-
order byte.)

(SSP) ← (SSP)–2, ((SSP)) ← (PC+2), (SSP) ← (SSP)–2, ((SSP)) ← (PS)

(S) ← 1, (I) ← 0, (PCB) ← Vector address (High-order byte)

(PC) ← Vector address (Low-order word)

CCR:

I: Cleared

S: Set

T, N, Z, V, andC: Unchanged

Number of bytes: 2

Number of cycles: 20

Correction value: 8×(c)

For an explanation of (c), see Tables 8.4a and 8.4b.

I S T N Z V C

R S – – – – –

165

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: INT #11

7 7 6 6
PC

9 9
DTB

CCR

SA

038000
× × 037FFF
× × 037FFE

SSP

8 8
PCB

B B
DPR

A A
ADB

0 2
ILM

1 5
RP

0 3
SSB

8 0 0 0
SSP

× × 037FFD
× × 037FFC
× × 037FFB
× × 037FFA
× × 037FF9
× × 037FF8
× × 037FF7
× × 037FF6
× × 037FF5
× × 037FF4

Before execution

E 7 9 5
PC

9 9
DTB

CCR

SA

F F 037FFF
E E 037FFE

SSP

8 9
PCB

B B
DPR

A A
ADB

0 2
ILM

1 5
RP

0 3
SSB

7 F F 4
SSP

D D 037FFD
C C 037FFC
B B 037FFB
A A 037FFA
9 9 037FF9
8 8 037FF8
7 7 037FF7
6 8 037FF6
5 5 037FF5
8 5 037FF4

After execution

Memory

8 9 FFFFD2
E 7 FFFFD1
9 5 FFFFD0

Memory

8 9 FFFFD2
E 7 FFFFD1
9 5 FFFFD0

I S T N Z V C
0 1 0 0 1 0 1

I S T N Z V C
0 0 0 0 1 0 1

F F E E D D C C F F E E D D C C

166

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

INT9 (Software Interrupt)

Cause a branch to the interrupt handling routine pointed to by the vector.

By executing the RETI instruction in the interrupt handling routine to which control has
been transferred, control returns to the instruction following this instruction.

Assembler format: INT9

Operation: (SSP) ← (SSP)–2, ((SSP)) ← (AH), (SSP) ← (SSP)–2, ((SSP)) ← (AL)

(SSP) ← (SSP)–2, ((SSP)) ← (DPR) : (ADB) (DPR and ADB are saved as a set, DPR as
the high-order byte and ADB as the low-
order byte.)

(SSP) ← (SSP)–2, ((SSP)) ← (DTB) : (PCB) (DTB and PCB are saved as a set, DTB as
the high-order byte and PCB as the low-
order byte.)

(SSP) ← (SSP)–2, ((SSP)) ← (PC+1), (SSP) ← (SSP)–2, ((SSP)) ← (PS)

(S) ← 1, (I) ← 0, (PCB) ← Vector address (High-order byte), (PC) ← Vector address
(Low-order word)

CCR:

I: Cleared

S: Set

T, N, Z, V, and C: Unchanged

Number of bytes: 1

Number of cycles: 20

Correction value: 8×(c)

For an explanation of (c), see Tables 8.4a and 8.4b.

I S T N Z V C

R S – – – – –

167

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: INT9

9 9 A A
PC

7 7
DTB

SA

038000
× × 037FFF
× × 037FFE

SSP

8 8
PCB

5 5
DPR

6 6
ADB

0 2
ILM

1 5
RP

0 3
SSB

8 0 0 0
SSP

× × 037FFD
× × 037FFC
× × 037FFB
× × 037FFA
× × 037FF9
× × 037FF8
× × 037FF7
× × 037FF6
× × 037FF5
× × 037FF4

Before execution

E 7 9 5
PC

7 7
DTB

SA

1 1 037FFF
2 2 037FFE

SSP

8 9
PCB

5 5
DPR

6 6
ADB

0 2
ILM

1 5
RP

0 3
SSB

7 F F 4
SSP

3 3 037FFD
4 4 037FFC
5 5 037FFB
6 6 037FFA
7 7 037FF9
8 8 037FF8
9 9 037FF7
A B 037FF6
5 5 037FF5
8 5 037FF4

After execution

Memory

8 9 FFFFDA
E 7 FFFFD9
9 5 FFFFD8

Memory

8 9 FFFFDA
E 7 FFFFD9
9 5 FFFFD8

1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4

CCR CCR

I S T N Z V C
0 1 0 0 1 0 1

I S T N Z V C
0 0 0 0 1 0 1

168

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

INTP (Software Interrupt)

Cause a branch to the interrupt handling routine at the 24-bit physical address
specified by the operand. Any address in the entire 16MB space can be specified.

By executing the RETI instruction in the interrupt handling routine to which control has
been transferred, control returns to the instruction following this instruction.

Assembler format: INTP addr24

Operation: (SSP) ← (SSP–2, ((SSP)) ← (AH), (SSP) ← (SSP)–2, ((SSP)) ← (AL)

(SSP) ← (SSP)–2, ((SSP)) ← (DPR) : (ADB)(DPR: High-order byte, ADB: Low-order byte)

(SSP) ← (SSP)–2, ((SSP)) ← (DTB) : (PCB) (DTB: High-order byte, PCB: Low-order byte)

(SSP) ← (SSP)–2, ((SSP)) ← (PC+4), (SSP) ← (SSP)–2, ((SSP)) ← (PS)

(S) ← 1, (I) ← 0, (PCB) ← Most significant byte of addr24, (PC) ← Low-order word of
addr24

CCR:

I : Cleared

S: Set

T, N, Z, V, and C: Unchanged

Number of bytes: 4

Number of cycles: 17

Corrrection value: 6×(c)

For an explanation of (c), see Tables 8.4a and 8.4b.

I S T N Z V C

R S – – – – –

169

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: INTP 0C8F220H

9 9 A A
PC

7 7
DTB

1 1 2 2 3 3 4 4
A

Memory
038000

× × 037FFF
× × 037FFE

SSP

8 8
PCB

5 5
DPR

6 6
ADB

0 3
ILM

1 0
RP

0 3
SSB

8 0 0 0
SSP

× × 037FFD
× × 037FFC
× × 037FFB
× × 037FFA
× × 037FF9
× × 037FF8
× × 037FF7
× × 037FF6
× × 037FF5
× × 037FF4

Before execution

F 2 2 0
PC

7 7
DTB

A

Memory
038000

1 1 037FFF
2 2 037FFE

SSP

C 8
PCB

5 5
DPR

6 6
ADB

0 3
ILM

1 0
RP

0 3
SSB

7 F F 4
SSP

3 3 037FFD
4 4 037FFC
5 5 037FFB
6 6 037FFA
7 7 037FF9
8 8 037FF8
9 9 037FF7
A E 037FF6
7 0 037FF5
8 5 037FF4

After execution

1 1 2 2 3 3 4 4

CCR CCR

I S T N Z V C
0 1 0 0 1 0 1

I S T N Z V C
0 0 0 0 1 0 1

170

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

JCTX (Jump Context)

Restore register contents or an address saved in memory.

Assembler format: JCTX @A

Operation: (temp) ← (AL)

(PS) ← ((temp)) : (temp) ← (temp)+2

(PC) ← ((temp)) : (temp) ← (temp)+2

(DTB), (PCB) ← ((temp)) : (temp) ← (temp)+2

(DPR), (ADB) ← ((temp)) : (temp) ← (temp)+2

(AL) ← ((temp)) : (temp) ← (temp)+2

(AH) ← ((temp))

CCR:

I : Stores bit 6 of the address indicated by AL.

S : Stores bit 5 of the address indicated by AL.

T : Stores bit 4 of the address indicated by AL.

N: Stores bit 3 of the address indicated by AL.

Z : Stores bit 2 of the address indicated by AL.

V : Stores bit 1 of the address indicated by AL.

C: Stores bit 0 of the address indicated by AL.

Number of bytes: 1

Number of cycles: 14

Correction value: 6×(c)

For an explanation of (c), see Tables 8.4a and 8.4b.

I S T N Z V C

* * * * * * *

171

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: JCTX @A

 × × × ×
PC

0 9
DTB

SA

Memory
09E02C

C B 09E02B
7 5 09E02A

AL

× ×
PCB

× ×
DPR

× ×
ADB

× ×
ILM

× ×
RP

0 2 09E029
5 0 09E028
0 8 09E027
C E 09E026
8 0 09E025
5 0 09E024
8 8 09E023
0 1 09E022
F 6 09E021
8 A 09E020

Before execution

8 8 0 1
PC

8 0
DTB

SA

5 0
PCB

0 8
DPR

C E
ADB

0 7
ILM

1 6
RP

Memory
09E02C

C B 09E02B
7 5 09E02A
0 2 09E029
5 0 09E028
0 8 09E027
C E 09E026
8 0 09E025
5 0 09E024
8 8 09E023
0 1 09E022
F 6 09E021
8 A 09E020

After execution

CCR CCR

I S T N Z V C
0 0 0 1 0 1 0

I S T N Z V C

× × × × × × ×

× × × × E 0 2 0 C B 7 5 0 2 5 0

172

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

JMP (Jump Destination Address)

Read the word data from the address specified by the operand and cause a branch to
the address specified by the word data.

Assembler format: JMP @A JMP addr16

JMP @ear JMP @eam

Operation: (PC) ← (Operand)

CCR:

None of the flags is changed.

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (c) in the table, see Tables 8.4a and 8.4b.

Example: JMP @@ RW0+2

I S T N Z V C

– – – – – – –

Operand @A @ear @eam ad16

Number of bytes 1 2 2+ 3

Number of cycles 2 3 4+(a) 3

Correction value 0 0 (c) 0

Before execution

Memory

D B A0A3
8 0 A0A2
× × A0A1

E 0 0 0 PC

RW0+2

× × A0A0

A 0 A 0 RW0

After execution

Memory

D B A0A3
8 0 A0A2
× × A0A1

D B 8 0 PC

RW0+2

× × A0A0

A 0 A 0 RW0

173

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

JMPP (Jump Destination Physical Address)

If the operand is addr24, this instruction causes a branch to the physical address
specified by addr24.

If the operand is @ea, the instruction causes a branch to the physical address
specified by the contents of the operand.

Assembler format: (1) JMPP addr24

(2) JMPP @ear JMPP @eam

Operation: (1): (PC)← Low-order word of addr24

(PCB) ← Most significant byte of addr24

(2): (PC) ← (ea) (Word transfer)

(PCB) ← (ea+2) (Byte transfer)

CCR:

None of the flags is changed.

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (d) in the table, see Tables 8.4a and 8.4b.

Example: JMPP 0FFC850H

I S T N Z V C

– – – – – – –

Operand ad24 @ear @eam

Number of bytes 4 2 2+

Number of cycles 4 5 6+(a)

Correction value 0 0 (d)

1 2 4 8 PC

Before execution

3 4PCB

C 8 5 0 PC

After execution

F FPCB

174

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

LINK (Link and create new stack frame)

Store the current value of the frame pointer (RW3) in a stack and set a new frame
pointer. This allows an area for a new local variable to be reserved. This instruction is
used before a function is called.

Assembler format: LINK #imm8

Operation: (sp) ← (sp)–2 ; ((sp)) ← (RW3) ; (RW3) ← (sp) ; (sp) ← (sp)–imm8

CCR:

Number of bytes: 2

Number of cycles: 6

Correction value: (c)

For an explanation of (c), see Tables 8.4a and 8.4b.

Example: LINK #20H

I S T N Z V C

– – – – – – –

None of the flags is changed.

Before execution

Memory

× × E022

E 0 2 2SP

SP

A 0 4 6RW3

After execution

Memory

A 0
4 6 E020

E 0 0 0SP

SP × × E000

E 0 2 0RW3

175

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

LSL (Logical Shift Byte Data of Accumulator to Left)

Shift the least significant byte data of the accumulator (A) to the left by the number of
bits specified by the second operand. The least significant bit of A is set to zero. The
bit last shifted out from the most significant bit of the least significant byte data of A is
stored in the carry bit (C).

Assembler format: LSL A,R0

Operation:

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the shifting result is “1”, cleared otherwise.

Z: Set when the shifting result is zero, cleared otherwise.

V: Unchanged

C: Stores the bit last shifted out from the MSB of A. Cleared when the shift
amount is zero.

Number of bytes: 2

Number of cycles: 6 when (R0) is equal to 0 ; otherwise, 5 + (R0)

Correction value: 0

Example: LSL A,R0

I S T N Z V C

– – – * * – *

MSB LSBC A

0

CCR

Before execution

CCR

After execution

0 2R0 0 2R0

× × × × × × F F A × × × × × × F C A

× × × × ×
T N Z V C

× 1 0 × ×
T N Z V C

176

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

LSLL (Logical Shift Long Word Data of Accumulator to Left)

Shift the long word data of the accumulator (A) to the left by the number of bits
specified by the second operand. The least significant bit of A is set to zero. The bit
last shifted out from the most significant bit is stored in the carry bit (C).

Assembler format: LSLL A,R0

Operation:

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the shifting result is “1”, cleared otherwise.

Z: Set when the shifting result is zero, cleared otherwise.

V: Unchanged

C: Stores the bit last shifted out from the MSB of A. Cleared when the shift
amount is zero.

Number of bytes: 2

Number of cycles: 6 when (R0) is equal to 0; otherwise, 6 + (R0)

Correction value: 0

Example: LSLL A,R0

I S T N Z V C

– – – * * – *

MSB LSBC A

0

3 3 3 3 3 3 3 3A

Before execution

C C C C C C C C A

After execution

0 2R0 0 2R0

CCR × × × × ×
T N Z V C

CCR × 1 0 × 0

T N Z V C

177

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

LSLW (Logical Shift Word Data of Accumulator to Left)

Shift the low-order word data of the accumulator (A) to the left by one bit. The least
significant bit of A is set to zero. The bit shifted out from the most significant bit of the
low-order word data of A is stored in the carry bit (C).

Assembler format: LSLW A/SHLW A

Operation:

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the shifting result is “1”, cleared otherwise.

Z: Set when the shifting result is zero, cleared otherwise.

V: Unchanged

C: Stores the bit shifted out from the MSB of A.

Number of bytes: 1

Number of cycles: 2

Correction value: 0

Example: LSLW A

I S T N Z V C

– – – * * – *

MSB LSBAC

0

Before execution After execution

× × × × A A 5 5 A × × × × 5 5 A A A

CCR × × × × ×
T N Z V C

CCR × 0 0 × 1

T N Z V C

178

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

LSLW (Logical Shift Word Data of Accumulator to Left)

Shift the low-order word data of the accumulator (A) to the left by the number of bits
specified by the second operand. The least significant bit of A is set to zero. The bit
last shifted out from the most significant bit of the low-order word data of A is stored in
the carry bit (C).

Assembler format: LSLW A,R0

Operation:

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the shifting result is “1”, cleared otherwise.

Z: Set when the shifting result is zero, cleared otherwise.

V: Unchanged

C: Stores the bit last shifted out from the MSB of A. Cleared when the shift
amount is zero.

Number of bytes: 2

Number of cycles: 6 when (R0) is equal to 0; otherwise, 5 + (R0)

Correction value: 0

Example: LSLW A,R0

I S T N Z V C

– – – * * – *

MSB LSBAC

0

× × × × A A 5 5 A

Before execution

× × × × A 5 5 0 A

After execution

0 4R0 0 4R0

CCR × × × × ×
T N Z V C

CCR × 1 0 × 0

T N Z V C

179

MEMO

180

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

LSR (Logical Shift Byte Data of Accumulator to Right)

Shift the least significant byte data of the accumulator (A) to the right by the number of
bits specified by the second operand. The most significant bit of the least significant
byte of A is set to zero. The bit last shifted out from the least significant bit is stored in
the carry bit (C).

Assembler format: LSR A,R0

Operation:

CCR:

I and S: Unchanged

T: Set when the shifted-out data contains one or more “1” bits, cleared otherwise.
Also cleared when the shift amount is zero.

N: Set when the MSB of the shifting result is “1”, cleared otherwise.

Z: Set when the shifting result is zero, cleared otherwise.

V: Unchanged

C: Stores the bit last shifted out from the LSB of A. Cleared when the shift amount
is zero.

Number of bytes: 2

Number of cycles: 6 when (R0) is equal to 0; otherwise, 5 + (R0)

Correction value: 0

I S T N Z V C

– – * * * – *

MSB LSB CA

0

T
1

181

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: LSR A,R0

× × × × × × F F A

Before execution

× × × × × × 0 7 A

After execution

0 5 R0 0 5 R0

CCR × × × × ×
T N Z V C

CCR 1 1 0 × 1

T N Z V C

182

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

LSRL (Logical Shift Long Word Data of Accumulator to
Right)

Shift the long word data of the accumulator (A) to the right by the number of bits
specified by the second operand. The most significant bit of A is set to zero. The bit
last shifted out from the least significant bit of A is stored in the carry bit (C).

Assembler format: LSRL A,R0

Operation:

CCR:

I and S: Unchanged

T: Set when the shifted-out data contains one or more “1” bits, cleared otherwise.
Also cleared when the shift amount is zero.

N: Set when the MSB of the shifting result is “1”, cleared otherwise.

Z: Set when the shifting result is zero, cleared otherwise.

V: Unchanged

C: Stores the bit last shifted out from the LSB of A. Cleared when the shift amount
is zero.

Number of bytes: 2

Number of cycles: 6 when (R0) is equal to 0; otherwise, 6 + (R0)

Correction value: 0

I S T N Z V C

– – * * * – *

MSB LSB CA

0

T
1

183

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: LSRL A,R0

3 3 3 3 3 3 3 3 A

Before execution

0 0 0 0 3 3 3 3 A

After execution

1 0R0 1 0R0

CCR × × × × ×
T N Z V C

CCR 1 0 0 × 0

T N Z V C

184

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

LSRW (Logical Shift Word Data of Accumulator to Right)

Shift the low-order word data of the accumulator (A) to the right by one bit. The most
significant bit of the low-order word data of A is set to zero. The least significant bit is
stored in the carry bit (C).

Assembler format: LSRW A/SHRW A

Operation:

CCR:

I and S: Unchanged

T: Stores the OR of the shifted-out data and the old T flag value.

N: Cleared

Z: Set when the shifting result is zero, cleared otherwise.

V: Unchanged

C: Stores the bit shifted out from the LSB of A.

Number of bytes: 1

Number of cycles: 2

Correction value: 0

Example: LSRW A

I S T N Z V C

– – * R * – *

MSB LSBA C

0

T
1

× × × × A A A A A

Before execution

× × × × 5 5 5 5 A

After execution

CCR 1 × × × 0
T N Z V C

CCR 1 0 0 × 0

T N Z V C

185

MEMO

186

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

LSRW (Logical Shift Word Data of Accumulator to Right)

Shift the low-order word data of the accumulator (A) to the right by the number of bits
specified by the second operand. The most significant bit of the low-order word data
of A is set to zero. The bit last shifted out from the least significant bit is stored in the
carry bit (C).

Assembler format: LSRW A,R0

Operation:

CCR:

I and S: Unchanged

T: Set when the shifted-out data contains one or more “1” bits, cleared otherwise.
Also cleared when the shift amount is zero.

N: Set when the MSB of the shifting result is “1”, cleared otherwise.

Z: Set when the shifting result is zero, cleared otherwise.

V: Unchanged

C: Stores the bit last shifted out from the LSB of A. Cleared when the shift amount
is zero.

Number of bytes: 2

Number of cycles: 6 when (R0) is equal to 0; otherwise, 5 + (R0)

Correction value: 0

I S T N Z V C

– – * * * – *

MSB LSBA C

0

T
1

187

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: LSRW A,R0

× × × × A A A A A

Before execution

× × × × 0 0 0 A A

After execution

0 CR0 0 CR0

CCR × × × × ×
T N Z V C

CCR 1 0 0 × 1

T N Z V C

188

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

MOV (Move Byte Mata from Source to Accumulator)

Transfer the values of bits 0 to 15 of the accumulator (A) to bits 16 to 31, then transfer
zeros to bits 8 to 15. The byte data specified by the second operand is transferred to
bits 0 to 7.

If the second operand is @A, transfer to bits 16 to 31 is not performed.

Assembler format: MOV A,#imm8 MOV A,Ri

MOV A,@A MOV A,dir

MOV A,@RLi + disp8 MOV A,addr16

MOV A,io MOV A,brg1

MOV A,eam MOV A,ear

Operation: (A) ← (Second operand) (Byte transfer)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the transferred data is “1”, cleared otherwise.

Z: Set when the transferred data is zero, cleared otherwise.

V and C: Unchanged

Number of bytes:

Number of cycles:

Correction value:

*: One cycle for the program bank register (PCB), additional data bank register (ADB),
system stack bank register (SSB), and user stack bank register (USB). Two cycles
for the data bank register (DTB) and direct page register (DPR).

For an explanation of (a) and (b) in the table, see Tables 8.4a and 8.4b.

I S T N Z V C

– – – * * – –

Second operand #im8 @A @RLi+8 io ad16 Ri dir ear eam brg1

Number of bytes 2 2 3 2 3 1 2 2 2+ 2

Number of cycles 2 3 10 3 4 2 3 2 3+(a) *

Correction value 0 (b) (b) (b) (b) 0 (b) 0 (b) 0

189

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: MOV A,0092H

× × × × A 0 4 6 A

Before execution

A 0 4 6 0 0 7 1 A

After execution

Memory

7 1 0092

Memory

7 1 0092

CCR × × × × ×
T N Z V C

CCR × 0 0 × ×
T N Z V C

190

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

MOV (Move Byte Data from Accumulator to Destination)

Transfer the least significant byte data of the accumulator (A) to the address specified
by the first operand.

Assembler format: MOV dir,A MOV Ri,A

MOV @RLi+disp8,A MOV io,A

MOV addr16,A MOV brg2,A

MOV ear,A MOV eam,A

Operation: (First operand) ← (A) (Byte transfer)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the transferred data is “1”, cleared otherwise.

Z: Set when the transferred data is zero, cleared otherwise.

V and C: Unchanged

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (b) in the table, see Tables 8.4a and 8.4b.

Example: MOV R1,A

I S T N Z V C

– – – * * – –

Second operand dir @RLi+8 ad16 io Ri ear eam brg2

Number of bytes 2 3 3 2 1 2 2+ 2

Number of cycles 3 10 4 3 2 2 3+(a) 1

Correction value (b) (b) (b) (b) 0 0 (b) 0

× × × × 4 9 3 2 A

Before execution

× × × × 4 9 3 2A

After execution

× ×R1 3 2R1CCR × × × × ×
T N Z V C

CCR × 0 0 × ×
T N Z V C

191

MEMO

192

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

MOV (Move Byte Immediate Data to Destination)

Transfer the 8-bit immediate data specified by the second operand to the address
specified by the first operand.

When the first operand is @PC + disp16, the data is transferred to the “address of the
location containing the machine instruction for the MOV instruction + 4 + rel”, not the
“address of the location containing the machine instruction for the instruction
following the MOV instruction + rel”.

Assembler format: MOV RP,#imm8 MOV ILM,#imm8

MOV io,#imm8 MOV dir,#imm8

MOV ear,#imm8 MOV eam,#imm8

Operation: (First operand) ← #imm8

CCR:

If the data is transferrred to a general-
purpose register (R0 to R7) or bank
register

If the data is transferred to a register other
than the general-purpose registers (R0 to
R7) and the bank register

I, S, and T: Unchanged

N: Unchanged if the data is transferred to a register other than the general-
purpose registers. If the data is transferred to a general-purpose register, N
is set when the MSB of the transferred data is “1”, cleared otherwise.

Z: Unchanged if the data is transferred to a register other than the general-
purpose registers. If the data is transferred to a general-purpose register, Z
is set when the transferred data is zero, cleared otherwise.

V and C:Unchanged

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (b) in the table, see Tables 8.4a and 8.4b.

I S T N Z V C I S T N Z V C

– – – * * – – – – – – – – –

First operand RP ILM dir io ear eam

Second operand #im8 #im8 #im8 #im8 #im8 #im8

Number of bytes 2 2 3 3 3 3+

Number of cycles 2 2 5 5 2 4+(a)

Correction value 0 0 (b) (b) 0 (b)

193

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: MOV 009FH,#22H

× × × × × × × × A

Before execution

× × × × × × × × A

After execution

Memory Memory

7 1 009F 2 2 009F

CCR × × × × ×
T N Z V C

CCR × × × × ×
T N Z V C

194

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

MOV (Move Byte Data from Source to Destination)

Transfer the byte data specified by the second operand to the first operand.

MOV Ri, #imm8, described below, is an instruction contained in the basic page map
(see C.2, “Basic Page Map”), with code different from that contained in MOV ear,
#imm8.

Assembler format: MOV Ri,#imm8

MOV Ri,ear MOV Ri,eam

MOV ear,Ri MOV eam,Ri

Operation: (First operand) ← (Second operand) (Byte transfer)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the transferred data is “1”, cleared otherwise.

Z: Set when the transferred data is zero, cleared otherwise.

V and C: Unchanged

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (b) in the table, see Tables 8.4a and 8.4b.

I S T N Z V C

– – – * * – –

First operand Ri Ri Ri ear eam

Second operand #im8 ear eam Ri Ri

Number of bytes 2 2 2+ 2 2+

Number of cycles 2 3 4+(a) 4 5+(a)

Correction value 0 0 (b) 0 (b)

195

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: MOV R3,@RW0

Before execution After execution

Memory

7 1 E001

E 0 0 1RW0

× ×R3

E 0 0 1RW0

7 1R3

Memory

7 1 E001

CCR × × × × ×
T N Z V C

CCR × × 0 0 ×
T N Z V C

196

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

MOV (Move Byte Data from AH to Memory)

Transfer the low-order byte data of AH to the memory location specified by the
contents of AL.

Assembler format: MOV @AL,AH / MOV @A,T

Operation: ((AL)) ← (AH) (Byte transfer)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the transferred data is “1”, cleared otherwise.

Z: Set when the transferred data is zero, cleared otherwise.

V and C: Unchanged

Number of bytes: 2

Number of cycles: 3

Correction value: (b)

For an explanation of (b), see Tables 8.4a and 8.4b.

Example: MOV @AL,AH

I S T N Z V C

– – – * * – –

0 1 2 2 E 0 8 4 A

Before execution

0 1 2 2 E 0 8 4 A

After execution

Memory Memory

7 1 E084 2 2 E084

CCR × × × × ×
T N Z V C

CCR × 0 0 × ×
T N Z V C

197

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

MOVB (Move Bit Data from Bit Address to Accumulator)

Transfer zeros to bits 8 to 15 of the accumulator (A). 00H is transferred to bits 0 to 7 of
A if the bit of the address specified by the second operand is equal to 0 and FFH is
transferred if the bit is equal to 1.

Assembler format: MOVB A,addr16:bp

MOVB A,dir:bp

MOVB A,io:bp

Operation: If (Second operand)=0 : (A) ← 00H (Byte transfer)

If (Second operand)=1 : (A) ← FFH (Byte transfer)

CCR:

I, S, and T: Unchanged

N: Set when the transferred bit is “1”, cleared when zero.

Z: Set when the transferred bit is zero, cleared when “1”.

V and C: Unchanged

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (b) in the table, see Tables 8.4a and 8.4b.

Example: MOVB A,32H:3

I S T N Z V C

– – – * * – –

Second operand ad16:bp dir:bp io:bp

Number of bytes 4 3 3

Number of cycles 5 5 4

Correction value (b) (b) (b)

× × × × × × × × A

Before execution

× × × × 0 0 F F A

After execution

Memory

× ×

Memory

7 F 0032
× ×

× ×
7 F 0032
× ×

CCR × × × × ×
T N Z V C

CCR × 1 0 × ×
T N Z V C

198

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

MOVB (Move Bit Data from Accumulator to Bit Address)

Transfer bit data 0 to the bit address specified by the first operand if the least
significant byte data of the accumulator (A) is 00H.

Bit data 1 is transferred to the bit address specified by the first operand if the least
significant byte data of A is not 00H.

Assembler format: MOVB addr16:bp,A

MOVB dir:bp,A

MOVB io:bp,A

Operation: If the byte data of (A) is 00H : (First operand) b=0 (Bit transfer)

If the byte data of (A) is not 00H : (First operand) b=1 (Bit transfer)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the byte data of A is “1”, cleared otherwise.

Z: Set when the byte data of A is zero, cleared otherwise.

V and C: Unchanged

Number of bytes:

Number of cycles:

Correction value:

For an explanation of and (b) in the table, see Tables 8.4a and 8.4b.

I S T N Z V C

– – – * * – –

Second operand ad16:bp dir:bp io:bp

Number of bytes 4 3 3

Number of cycles 7 7 6

Correction value 2×(b) 2×(b) 2×(b)

199

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: MOVB 765FH: 7,A

× × × × × × 0 1 A

Before execution

× × × × × × 0 1 A

After execution

Memory

× ×
7 F 765F
× ×

Memory

× ×
F F 765F
× ×

CCR × × × × ×
T N Z V C

CCR × 0 0 × ×
T N Z V C

200

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

MOVEA (Move Effective Address to Destination)

Transfer the value specified by the second operand (effective address) to the first
operand. If a general-purpose register is specified by the second operand, the address
of the general-purpose register is transferred.

If the destination (first operand) is the accumulator (A), the pre-transfer values of bits 0
to 15 are transferred to bits 16 to 31 of A.

Assembler format: MOVEA <destination>,earMOVEA <destination>,eam

Operation: First operand ← ea (Word transfer)

CCR:

None of the flags is changed.

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) in the table, see Tables 8.4a and 8.4b.

Example: MOVEA RW2,@RW0+2

I S T N Z V C

– – – – – – –

First operand A A RWi RWi

Second operand ear eam ear eam

Number of bytes 2 2+ 2 2+

Number of cycles 1 1+(a) 3 2+(a)

Correction value 0 0 0 0

Before execution

× × × ×RW2

After execution

0 0 6 BRW2

0 0 6 9RW0 0 0 6 9RW0

CCR × × × × ×
T N Z V C

CCR × × × × ×
T N Z V C

201

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

MOVL (Move Long Word Data from Source to Accumulator)

Transfer the long word data specified by the second operand to the accumulator (A).

Assembler format: MOVL A,#imm32

MOVL A,ear MOVL A,eam

Operation: (A) ← (Second operand) (Long word transfer)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the transferred data is “1”, cleared otherwise.

Z: Set when the transferred data is zero, cleared otherwise.

V and C: Unchanged

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (d) in the table, see Tables 8.4a and 8.4b.

Example: MOVL A,#0053FF64H

I S T N Z V C

– – – * * – –

Second operand #i32 ear eam

Number of bytes 5 2 2+

Number of cycles 3 4 5+(a)

Correction value 0 0 (d)

× × × × × × × ×A

Before execution

0 0 5 3 F F 6 4A

After execution

CCR × × × × ×
T N Z V C

CCR × 0 0 × ×
T N Z V C

202

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

MOVL (Move Long Word Data from Accumulator to
Destination)

Transfer the long word data of the accumulator (A) to the first operand.

Assembler format: MOVL ear,A MOVL eam,A

Operation: (First operand) ← (A) (Long word transfer)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the transferred data is “1”, cleared otherwise.

Z: Set when the transferred data is zero, cleared otherwise.

V and C: Unchanged

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (d) in the table, see Tables 8.4a and 8.4b.

Example: MOVL RL1,A

I S T N Z V C

– – – * * – –

First operand ear eam

Number of bytes 2 2+

Number of cycles 4 5+(a)

Correction value 0 (d)

Before execution After execution

0 1 9 7 A 0 2 4A 0 1 9 7 A 0 2 4A

× × × × × × × ×RL1 0 1 9 7 A 0 2 4RL1

CCR × × × × ×
T N Z V C

CCR × 0 0 × ×
T N Z V C

203

MEMO

204

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

MOVN (Move Immediate Nibble Data to Accumulator)

Transfer the values of bits 0 to 15 of the accumulator (A) to bits 16 to 31. Zeros are
transferred to bits 4 to 15 and the nibble data specified by the second operand is
transferred to bits 0 to 3.

Assembler format: MOVN A,#imm4

Operation: (A) ← imm4 (Byte transfer)

CCR:

I, S, and T: Unchanged

N: Cleared

Z: Set when the transferred data is zero, cleared otherwise.

V and C: Unchanged

Number of bytes: 1

Number of cycles: 1

Correction value: 0

Example: MOVN A,#0FH

I S T N Z V C

– – – R * – –

× × × × 6 2 0 7 A

Before execution

6 2 0 7 0 0 0 F A

After execution

CCR × × × × ×
T N Z V C

CCR × 0 0 × ×
T N Z V C

205

MEMO

206

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

MOVS (Move String Byte)

Transfer byte data from the address specified by AL in the space specified by <source
bank> to the address specified by AH in the space specified by <destination bank>.
The transfer is repeated the number of times specified by RW0, with the addresses
being changed each time. The transfer is not performed if RW0 is equal to zero. Four
types of registers PCB, DTB, ADB, and SPB can be used as <destination bank> and
<source bank>. By default, DTB is assumed.

The addresses can be either incremented or decremented. By default, the addresses
are incremented.

If an interrupt occurs during the transfer, the transfer is suspended to handle the
interrupt. The transfer is resumed after the interrupt has been handled.

Assembler format: MOVSI [<destination bank>] [,<source bank>] (When the addresses are incremented)

MOVSD [<destination bank>] [,<source bank>] (When the addresses are decremented)

Operation: The following is repeated until RW0 becomes equal to 0:

((AH)) ← ((AL)) (Byte transfer)

(AH) ← (AH)±1, (AL) ← (AL)±1 (+ if MOVSWI, – if MOVSWD)

(RW0) ← (RW0)–1

CCR:

None of the flags is changed.

Number of bytes: 2

Number of cycles: 5 if (RW0) is equal to zero; otherwisee, 4+8×(RW0)

Correction value: 2×(b)×(RW0)

For an explanation of (b), see Tables 8.4a and 8.4b.

I S T N Z V C

– – – – – – –

207

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: MOVSI ADB,PCB

0 0 0 3RW0

Before execution

Memory

F C FF0003
F D FF0002
F E FF0001

F FPCB

× × 018002
× × 018001

AH

8 0 0 0 0 0 0 0
AH AL

× × 018000

 0 1ADB

F F FF0000AL

× × 018003

0 0 0 0RW0

After execution

Memory

F C FF0003
F D FF0002
F E FF0001

F FPCB

F D 018002
F E 018001

AH

AH AL

F F 018000

 0 1ADB

F F FF0000

AL

× × 018003

8 0 0 3 0 0 0 3

CCR × × × × ×
T N Z V C

CCR × × × × ×
T N Z V C

208

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

MOVSW (Move String Word)

Transfer word data from the address specified by AL in the space specified by <source
bank> to the address specified by AH in the space specified by <destination bank>.
The transfer is repeated the number of times specified by RW0, with the addresses
being changed each time. The transfer is not performed if RW0 is equal to zero. Four
types of registers PCB, DTB, ADB, and SPB can be used as <destination bank> and
<source bank>. By default, DTB is assumed.

The addresses can be either incremented or decremented. By default, the addresses
are incremented.

If an interrupt occurs during the transfer, the transfer is suspended to handle the
interrupt. The transfer is resumed after the interrupt has been handled.

Assembler format: MOVSWI [<destination bank>] [,<source bank>] (When the addresses are incremented)

MOVSWD [<destination bank>] [,<source bank>] (When the addresses are decremented)

Operation: The following is repeated until RW0 becomes equal to 0:

((AH)) ← ((AL)) (Byte transfer)

(AH) ← (AH)±2, (AL) ← (AL)±2 (+ if MOVSWI, – for MOVSWD)

(RW0) ← (RW0)–1

CCR:

None of the flags is changed.

Number of bytes: 2

Number of cycles: 5 if (RW0) is equal to zero; otherwise, 4 + 8×(RW0)

Correction value: 2×(c)×(RW0)

For an explanation of (c), see Tables 8.4a and 8.4b.

I S T N Z V C

– – – – – – –

209

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: MOVSW,ADB

0 0 0 3RW0

Before execution

Memory

× × CD0005
× × CD0004
× × CD0003

C DDTB

3 1 38A002
4 D 38A001

AL

AH AL

4 6 38A000

3 8ADB

× × CD0002

AH

3 6 38A003

0 0 0 0RW0

After execution

Memory

2 6 CD0005
4 2 CD0004
3 6 CD0003

C DDTB

3 1 38A002
4 D 38A001

AL

AH AL

4 6 38A000

3 8ADB

3 1 CD0002

AH

3 6 38A003
4 2 38A004
2 6 38A005

4 2 38A004
2 6 38A005

× × CD0001
× × CD0000

4 D CD0001
4 6 CD0000

0 0 0 0 A 0 0 0 0 0 0 6 A 0 0 6

CCR × × × × ×
T N Z V C

CCR × × × × ×
T N Z V C

210

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

MOVW (Move Word Data from Source to Accumulator)

Transfer the values of bits 0 to 15 of the accumulator (A) to bits 16 to 31. Then, the
word data specified by the second operand is transferred to bits 0 to 15 of A. The
transfer is not performed if the second operand is @A.

Assembler format: MOVW A,#imm16 MOVW A,@RWi+disp8

MOVW A,@A MOVW A,addr16

MOVW A,@RLi+disp8 MOVW A,RWi

MOVW A,SP MOVW A,dir

MOVW A,io

MOVW A,ear MOVW A,eam

Operation: (A) ← (Second operand) (Word transfer)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the transferred data is “1”, cleared otherwise.

Z: Set when the transferred data is zero, cleared otherwise.

V and C: Unchanged

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (c) in the table, see Tables 8.4a and 8.4b.

I S T N Z V C

– – – * * – –

Second operand #i16 @A @RLi+8 SP io @RWi+8 ad16 RWi dir ear eam

Number of bytes 3 2 3 1 2 2 3 1 2 2 2+

Number of cycles 2 3 10 1 3 5 4 2 3 2 3+(a)

Correction value 0 (c) (c) 0 (c) (c) (c) 0 (c) 0 (c)

211

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: MOVW A,0F9A0H

× × × × 4 9 0 1 A

Before execution

4 9 0 1 A E 8 6 A

After execution

Memory Memory

A E F9A1 A E F9A1
8 6 F9A0 8 6 F9A0

CCR × × × × ×
T N Z V C

CCR × 1 0 × ×
T N Z V C

212

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

MOVW (Move Word Data from Accumulator to Destination)

Transfer the low-order word data of the accumulator (A) to the first operand.

Assembler format: MOVW @RLi+disp8,A MOVW addr16,A

MOVW SP,A MOVW RWi,A

MOVW io,A MOVW dir,A

MOVW @RWi+disp8,A

MOVW ear,A MOVW eam,A

Operation: (First operand) ← (A) (Word transfer)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the transferred data is “1”, cleared otherwise.

Z: Set when the transferred data is zero, cleared otherwise.

V and C: Unchanged

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (c) in the table, see Tables 8.4a and 8.4b.

Example: MOVW RW0,A

I S T N Z V C

– – – * * – –

First operand dir @RLi+8 ad16 SP io @RWi+8 RWi ear eam

Number of bytes 2 3 3 1 2 2 1 2 2+

Number of cycles 3 10 4 1 3 5 2 2 3+(a)

Correction value (c) (c) (c) 0 (c) (c) 0 0 (c)

× × × × 0 0 0 0A

Before execution

× × × ×RW0

× × × × 0 0 0 0A

After execution

0 0 0 0RW0

CCR × × × × ×
T N Z V C

CCR × 0 1 × ×
T N Z V C

213

MEMO

214

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

MOVW (Move Immediate Word Data to Destination)

This instruction transfers the 16-bit immediate data to the first operand.

When the first operand is @PC + disp16, the transfer destination address is the
address where the machine instruction of the MOVW instruction is stored + 4 + disp16.
Note that this is not the address where the machine instruction of the instruction
subsequent to the MOVW instruction is stored+disp16.

Assembler format: MOVW ear,#imm16 MOVW eam,#imm16

Operation: (First operand) ← #imm16

CCR If the data is transferred to a general- If the data is transferred to a register
purpose register (RW0 to RW7) or other than the general-purpose registers
bank register (RW0 to RW7) and the bank register

I, S, and T: Unchanged

N: Unchanged if the data is transferred to a register other than the general-
purpose registers. If the data is transferred to a general-purpose register, N
is set when the MSB of the transferred data is “1”, cleared otherwise.

Z: Unchanged if the data is transferred to a register other than the general-
purpose registers. If the data is transferred to a general-purpose register, Z
is set when the transferred data is zero, cleared otherwise.

V and C: Unchanged and none of the flags is changed.

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (c) in the table, see Tables 8.4a and 8.4b.

I S T N Z V C I S T N Z V C

– – – * * – – – – – – – – –

First operand ear eam

Number of bytes 4 4+

Number of cycles 2 4+(a)

Correction value 0 (c)

215

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: MOVW RW0,#2343H

Before execution

× × × ×RW0

After execution

2 3 4 3RW0

CCR × × × × ×
T N Z V C

CCR × 0 0 × ×
T N Z V C

216

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

MOVW (Move Word Data from Source to Destination)

Transfer the word data specified by the second operand to the first operand.

Assembler format: MOVW RWi,#imm16

MOVW ear,RWi MOVW eam,RWi

MOVW RWi,ear MOVW RWi,eam

Operation: (First operand) ← (Second operand) (Word transfer)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the transferred data is “1”, cleared otherwise.

Z: Set when the transferred data is zero, cleared otherwise.

V and C: Unchanged

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (c) in the table, see Tables 8.4a and 8.4b.

Example: MOVW RW1,RW0

I S T N Z V C

– – – * * – –

First operand RWi RWi RWi ear eam

Second operand #i16 ear eam RWi RWi

Number of bytes 3 2 2+ 2 2+

Number of cycles 2 4 5+(a) 3 4+(a)

Correction value 0 0 (c) 0 (c)

Before execution

0 0 4 ARW0

After execution

0 0 4 ARW0

× × × × RW1 0 0 4 A RW1

× × × × × × × × A × × × × × × × × A

CCR × × × × ×
T N Z V C

CCR × 0 0 × ×
T N Z V C

217

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

MOVW (Move Immediate Word Data to io)

Transfer 16-bit immediate data to the I/O area specified by the first operand.

Assembler format: MOVW io,#imm16

Operation: (First operand) ← imm16 (Word transfer)

CCR:

None of the flags is changed.

Number of bytes: 4

Number of cycles: 5

Correction value: (c)

For an explanation of (c), see Tables 8.4a and 8.4b.

Example: MOVW 24H,#2343H

I S T N Z V C

– – – – – – –

Before execution After execution

Memory

× ×

Memory

× ×
× × 000025 2 3 000025
× × 000024 4 3 000024
× × × ×

CCR × × × × ×
T N Z V C

CCR × × × × ×
T N Z V C

218

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

MOVW (Move Word Data from AH to Memory)

Transfer the word data of AH to the memory location specified by the contents of AL.

Assembler format: MOVW @AL,AH / MOVW @A,T

Operation: ((AL)) ← (AH) (Word transfer)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the transferred data is “1”, cleared otherwise.

Z: Set when the transferred data is zero, cleared otherwise.

V and C: Unchanged

Number of bytes: 2

Number of cycles: 3

Correction value: (c)

For an explanation of (c), see Tables 8.4a and 8.4b.

Example: MOVW @AL,AH

I S T N Z V C

– – – * * – –

0 0 C B F E F F A

Before execution

0 0 C B F E F F A

After execution

Memory Memory

7 1 FEFF C B FEFF

CCR × × × × ×
T N Z V C

CCR × 1 0 × ×
T N Z V C

219

MEMO

220

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

MOVX (Move Byte Data with Sign Extension from Source to
Accumulator)

Transfer the values of bits 0 to 15 of the accumulator (A) to bits 16 to 31. Then, the
value resulting from sign-extending the second operand is transferred to bits 0 to 15 of
A. If the second operand is @A, transfer to bits 16 to 31 is not performed.

Assembler format: MOVX A,#imm8 MOVX A,@RWi+disp8

MOVX A,@A MOVX A,addr16

MOVX A,@RLi+disp8 MOVX A,Ri

MOVX A,dir MOVX A,io

MOVX A,ear MOVX A,eam

Operation: (A) ← (Second operand) (Byte transfer with sign extension)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the transferred data is “1”, cleared otherwise.

Z: Set when the transferred data is zero, cleared otherwise.

V and C: Unchanged

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (b) in the table, see Tables 8.4a and 8.4b.

I S T N Z V C

– – – * * – –

Second operand #im8 @A @RLi+8 dir io @RWi+8 ad16 Ri ear eam

Number of bytes 2 2 3 2 2 2 3 2 2 2+

Number of cycles 2 3 10 3 3 5 4 2 2 3+(a)

Correction value 0 (b) (b) (b) (b) (b) (b) 0 0 (b)

221

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: MOVX A,0E001H

× × × × A 0 4 6 A

Before execution

A 0 4 6 F F 8 6 A

After execution

Memory Memory

8 6 E001 8 6 E001

CCR × × × × ×
T N Z V C

CCR × 1 0 × ×
T N Z V C

222

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

MUL (Multiply Byte Data of Accumulator)

This instruction multiplies the low-order byte data of AH by that of AL as signed binary
numbers, then returns the result to AL of the accumulator (A).

Assembler format: MUL A

Operation: word (A) ← byte (AH)×byte (AL) (Byte multiplication)

CCR:

None of the flags is changed.

Number of bytes: 2

Number of cycles: 3 if byte (AH) is equal to zero; 12 if byte (AH) is not equal to zero and the result is positive;
13 if the result is negative.

Correction value: 0

Example: MUL A

I S T N Z V C

– – – – – – –

Before execution After execution

AH AL AH AL

0 0 F A 0 0 1 1 A 0 0 F A F F 9 A A

CCR × × × × ×
T N Z V C

CCR × × × × ×
T N Z V C

223

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

MUL (Multiply Byte Data of Accumulator and Effective
Address)

Multiply the byte data of the accumulator (A) by the byte data specified by the second
operand as signed binary numbers and store the result in bits 0 to 15 of A.

Assembler format: MUL A,ear MUL A,eam

Operation: word (A) ← byte (A) × byte (ea) (Byte multiplication)

CCR::

None of the flags is changed.

Number of bytes:

Number of cycles:

Correction value:

*1: 4 if byte (ear) is equal to zero; 13 if byte (ear) is not equal to zero and the result is
positive; 14 if the result is negative.

*2: 5 + (a) if byte (eam) is equal to zero; 14 + (a) if byte (eam) is not equal to zero and the
result is positive; 15 + (a) if the result is negative.

For an explanation of (b) in the table and (a) in *2, see Tables 8.4a and 8.4b.

Example: MUL A,R7

I S T N Z V C

– – – – – – –

Second operand ear eam

Number of bytes 2 2+

Number of cycles *1 *2

Correction value 0 (b)

× × × × 0 0 8 5A

Before execution

× × × × 2 B B 9 A

After execution

A 5R7 A 5R7

AH AL AH AL

CCR × × × × ×
T N Z V C

CCR × × × × ×
T N Z V C

224

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

MULW (Multiply Word Data of Accumulator)

Multiply the word data of the accumulator (A) by the word data specified by the second
operand as signed binary numbers and store the result in A as long word data.

Assembler format: MULW A

Operation: Long (A) ← word (AH)×word (AL) (Word multiplication)

CCR:

None of the flags is changed.

Number of bytes: 2

Number of cycles: 3 if word (AH) is equal to zero; 16 if word (AH) is not equal to zero and the result is
positive; 19 if the result is negative.

Correction value: 0

Example: MULW A

I S T N Z V C

– – – – – – –

A D 0 1 0 5 E D A

Before execution After execution

AH AL AH AL

F E 1 4 2 E E D A

CCR × × × × ×
T N Z V C

CCR × × × × ×
T N Z V C

225

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

MULW (Multiply Word Data of Accumulator and Effective
Address)

Multiply the word data of the accumulator (A) by the word data specified by the second
operand as signed binary numbers and store the result in A as long word data.

Assembler format: MULW A,ear MULW A,eam

Operation: Long (A) ← word (A)×word (Second operand) (Word multiplication)

CCR:

None of the flags is changed.

Number of bytes:

Number of cycles:

Correction value:

*1: 4 if Word (ear) is equal to zero; 17 if Word (ear) is not equal to zero and the result is
positive; 20 if the result is negative.

*2: 5 + (a) if Word (eam) is equal to zero; 18 + (a) if Word (eam) is not equal to zero and
the result is positive; 21 + (a) if the result is negative.

For an explanation of (b) in the table and (a) in *2, see Tables 8.4a and 8.4b.

Example: MULW A,RW5

I S T N Z V C

– – – – – – –

Second operand ear eam

Number of bytes 2 2+

Number of cycles *1 *2

Correction value 0 (b)

Before execution After execution

AH AL AH AL

4 3 1 4 RW5 4 3 1 4RW5

× × × × 8 3 4 2 A D F 5 0 8 7 2 8 A

CCR × × × × ×
T N Z V C

CCR × × × × ×
T N Z V C

226

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

MULU (Multiply Unsigned Byte Data of Accumulator)

Multiply the low-order byte data of AH by the low-order byte data of AL as unsigned
binary numbers and store the result in the AL of the accumulator (A).

Assembler format: MULU A

Operation: word (A) ← byte (AH)×byte (AL) (Byte multiplication)

CCR:

None of the flags is changed.

Number of bytes: 1

Number of cycles: 3 if byte (AH) is equal to zero; 7 if byte (AH) is not equal to zero.

Correction value: 0

Example: MULU A

I S T N Z V C

– – – – – – –

Before execution After execution

0 0 F A 0 0 1 1 A 0 0 F A 1 0 9 A A

CCR × × × × ×
T N Z V C

CCR × × × × ×
T N Z V C

227

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

MULU (Multiply Unsigned Byte Data of Accumulator and
Effective Address)

Multiply the byte data of the accumulator (A) by the byte data specified by the second
operand as unsigned binary numbers and store the result in bits 0 to 15 of A.

Assembler format: MULU A, ear MULU A, eam

Operation: word (A) ← byte (A) × byte (Second operand) (Byte multiplication)

CCR:

None of the flags is changed.

Number of bytes:

Number of cycles:

Correction value:

*1: 4 if byte (ear) is equal to zero; 8 if byte (ear) is not equal to zero.

*2: 5 + (a) if byte (eam) is equal to zero; 9 + (a) if not equal to zero.

For an explanation of (b) in the table and (a) in *2, see Tables 8.4a and 8.4b.

Example: MULU A, R7

I S T N Z V C

– – – – – – –

Second operand ear eam

Number of bytes 2 2 +

Number of cycles *1 *2

Correction value 0 (b)

Before execution After execution

R7 R7A 5 A 5

× × × × 0 0 8 5 A × × × × 5 5 B 9 A

CCR × × × × ×
T N Z V C

CCR × × × × ×
T N Z V C

228

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

MULUW (Multiply Unsigned Word Data of Accumulator)

Multiply the word data of AH by the word data of AL as unsigned binary numbers and
store the result in the accumulator (A) as long word data.

Assembler format: MULUW A

Operation: Long (A) ← word (AH)×word (AL) (Word multiplication)

CCR:

None of the flags is changed.

Number of bytes: 1

Number of cycles: 3 if word (AH) is equal to zero; 11 if word (AH) is not equal to zero

Correction value: 0

Example: MULUW A

I S T N Z V C

– – – – – – –

Before execution After execution

A D 0 1 0 5 E D A 0 4 0 1 2 E E D A

CCR × × × × ×
T N Z V C

CCR × × × × ×
T N Z V C

229

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

MULUW (Multiply Unsigned Word Data of Accumulator and
Effective Address)

Multiply the word data of the accumulator (A) by the word data specified by the second
operand as unsigned binary numbers and store the result in A as long word data.

Assembler format: MULUW A, ear MULUW A, eam

Operation: Long (A) ← word (A)×word (Second operand) (Word multiplication)

CCR:

None of the flags is changed.

Number of bytes:

Number of cycles:

Correction value:

*1: 4 if Word (ear) is equal to zero; 12 if Word (ear) is not equal to zero

*2: 5 + (a) if Word (eam) is zero; 13 + (a) if Word (eam) is not equal to zero

For an explanation of (c) in the table and (a) in *2, see Tables 8.4a and 8.4b.

Example: MULUW A, RW5

I S T N Z V C

– – – – – – –

Second operand ear eam

Number of bytes 2 2+

Number of cycles *1 *2

Correction value 0 (c)

4 3 1 4RW5

Before execution

× × × × 8 3 4 2 A

4 3 1 4RW5

After execution

A 2 2 6 4 8 7 2 8

CCR × × × × ×
T N Z V C

CCR × × × × ×
T N Z V C

230

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

NEG (Negate Byte Data of Destination)

Take the 2's complement of the byte data specified by the operand and store the result
in the operand. If the operand is the accumulator (A), the value resulting from sign-
extending the operation result is transferred to bits 8 to 15 of A.

Assembler format: NEG A

NEG ear NEG eam

Operation: (Operand) ← 0–(Operand) (Byte operation)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Set when an overflow has occurred as a result of the operation, cleared
otherwise.

C: Set when a borrow has occurred as a result of the operation, cleared
otherwise.

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (b) in the table, see Tables 8.4a and 8.4b.

Example: NEG R0

I S T N Z V C

– – – * * * *

Operand A ear eam

Number of bytes 1 2 2+

Number of cycles 2 3 5+(a)

Correction value 0 0 2×(b)

Before execution After execution

5 9R0 A 7R0

CCR × × × × ×
T N Z V C

CCR × 1 0 0 1

T N Z V C

231

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

NEGW (Negate Word Data of Destination)

Take the 2's complement of the word data specified by the operand and store the result
in the operand.

Assembler format: NEGW A

NEGW ear NEGW eam

Operation: (Operand) ← 0–(Operand) (Word operation)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Set when an overflow has occurred as a result of the operation, cleared
otherwise.

C: Set when a borrow has occurred as a result of the operation, cleared
otherwise.

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (c) in the table, see Tables 8.4a and 8.4b.

Example: NEGW A

I S T N Z V C

– – – * * * *

Operand A ear eam

Number of bytes 1 2 2+

Number of cycles 2 3 5+(a)

Correction value 0 0 2×(c)

× × × × A B 9 8 A

Before execution

× × × × 5 4 6 8 A

After execution

CCR × × × × ×
T N Z V C

CCR × 0 0 0 1

T N Z V C

232

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

NOP (No Operation)

Perform no operation.

Assembler format: NOP

Operation: No operation is performed.

CCR:

None of the flags is changed.

Number of bytes: 1

Number of cycles: 1

Correction value: 0

Example: NOP

I S T N Z V C

– – – – – – –

× × × × × × × × A

F 0 0 0 PC

× × × × × × × × A

F 0 0 1 PC

Before execution After execution

Memory Memory

× × F001 × × F001
0 0 F000 0 0 F000PC

PC

CCR × × × × ×
T N Z V C

CCR × × × × ×
T N Z V C

233

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

NOT (Not Byte Data of Destination)

Take the logical NOT of the byte data specified by the operand and store the result in
the operand.

Assembler format: NOT A

NOT ear NOT eam

Operation: (Operand) ← not (Operand) (Byte operation)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Cleared

C: Unchanged

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (b) in the table, see Tables 8.4a and 8.4b.

Example: NOT 0071H

I S T N Z V C

– – – * * R –

Operand A ear eam

Number of bytes 1 2 2+

Number of cycles 2 3 5+(a)

Correction value 0 0 2×(b)

× × × × × × × × A

Before execution

× × × × × × × × A

After execution

Memory Memory

F F 0071 0 0 0071

CCR × × × × ×
T N Z V C

CCR × 0 1 0 ×
T N Z V C

234

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

NOTW (Not Word Data of Destination)

Take the logical NOT of the word data specified by the operand and store the result in
the operand.

Assembler format: NOTW A

NOTW ear NOTW eam

Operation: (Operand) ← not (Operand) (Word logical NOT)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Cleared

C: Unchanged

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (c) in the table, see Tables 8.4a and 8.4b.

Example: NOTW RW3

I S T N Z V C

– – – * * R –

Operand A ear eam

Number of bytes 1 2 2+

Number of cycles 2 3 5+(a)

Correction value 0 0 2×(c)

Before execution

2 5 8 B RW3

After execution

D A 7 4 RW3

CCR × × × × ×
T N Z V C

CCR × 1 0 0 ×
T N Z V C

235

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

NRML (NORMALIZE Long Word)

Shift the long word data of the accumulator (A) to the left until the most significant bit
of A becomes 1, if the long word data is not zero. R0 is set to the number of shifts
required and the zero flag (Z) is cleared.

If the long word data of the accumulator (A) is zero, R0 is set to zero and the zero flag
(Z) is set.

Assembler format: NRML A,R0

Operation: If A≠0: The long word data is shifted to the left until the most significant bit of A becomes 1.

(R0) ← Number of shifts required, Z ← 0

If A=0: (R0) ← Zero, Z ← 1

CCR:

I, S, T, and N: Unchanged

Z: Set when A is equal to zero, cleared otherwise.

V and C: Unchanged

Number of bytes: 2

Number of cycles: 4 when the accumulator is equal to zero; otherwise, 6 + (Number of shifts required)

Correction value: 0

Example: NRML A,R0

I S T N Z V C

– – – – * – –

0 0 0 0 8 3 6 1 A

Before execution

8 3 6 1 0 0 0 0A

After execution

3 4R0 1 0R0

CCR × × × × ×
T N Z V C

CCR × × 0 × ×
T N Z V C

236

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

OR (Or Byte Data of Destination and Source to
Destination)

Take the logical OR of the byte data specified by the first operand and the byte data
specified by the second operand and store the result in the first operand.

Assembler format: OR A,#imm8

OR A,ear OR A,eam

OR ear,A OR eam,A

Operation: (First operand) ← (First operand) or (Second operand) (Byte logical OR)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Cleared

C: Unchanged

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (b) in the table, see Tables 8.4a and 8.4b.

I S T N Z V C

– – – * * R –

First operand A A A ear eam

Second operand #im8 ear eam A A

Number of bytes 2 2 2+ 2 2+

Number of cycles 2 3 4+(a) 3 5+(a)

Correction value 0 0 (b) 0 2×(b)

237

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: OR 0052H,A

× × × × 0 0 3 7 A

Before execution

× × × × 0 0 3 7 A

After execution

Memory Memory

F A 0052 F F 0052

CCR × × × × ×
T N Z V C

CCR × 1 0 0 ×
T N Z V C

238

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

OR (Or Byte Data of Immediate Data and Condition Code
Register to Condition Code Register)

Take the logical OR of the byte data of the condition code register (CCR) and specified
8-bit immediate data and store the result in the condition code register (CCR).

Bit 7 of the immediate data is ignored because the condition code register (CCR) is 7
bits long.

Assembler format: OR CCR,#imm8

Operation: (CCR) ← (CCR) or #imm8 (Byte logical OR)

CCR:

 I: Stores bit 6 of the operation result.

S: Stores bit 5 of the operation result.

T: Stores bit 4 of the operation result.

N: Stores bit 3 of the operation result.

Z: Stores bit 2 of the operation result.

V: Stores bit 1 of the operation result.

C: Stores bit 0 of the operation result.

Number of bytes: 2

Number of cycles: 3

Correction value: 0

Example: OR CCR,#57H

I S T N Z V C

* * * * * * *

Before execution

0CCR 1 1 0 1 0 1
I S T N Z V C

ILM × × ×
ILM2 ILM1 ILM0

RP × × × × ×
MSB LSB

After execution

1CCR 1 1 0 1 1 1
I S T N Z V C

ILM × × ×
ILM2 ILM1 ILM0

RP × × × × ×
MSB LSB

× × × × × × × ×A × × × × × × × ×A

239

MEMO

240

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

ORL (Or Long Word Data of Destination and Source to
Destination)

Take the logical OR of the long word data of the accumulator (A) and that specified by
the second operand and store the result in A.

Assembler format: ORL A,ear ORL A,eam

Operation: (A) ← (A) or (Second operand) (Long word logical OR)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Cleared

C: Unchanged

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (d) in the table, see Tables 8.4a and 8.4b.

I S T N Z V C

– – – * * R –

First operand A A

Second operand ear eam

Number of bytes 2 2+

Number of cycles 6 7+(a)

Correction value 0 (d)

241

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: ORL A,0FFF0H

7 2 5 D F 0 5 C A

Before execution

F F 5 D F A 5 C A

After execution

Memory Memory

F F FFF3 F F FFF3
5 5 FFF2 5 5 FFF2
A A FFF1 A A FFF1
0 0 FFF0 0 0 FFF0

CCR × × × × ×
T N Z V C

CCR × 1 0 0 ×
T N Z V C

242

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

ORW (Or Word Data of AH and AL to AL)

Take the logical OR of the word data of AH and that of AL and store the result in AL.

Assembler format: ORW A

Operation: (AL) ← (AH) or (AL) (Word logical OR)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Cleared

C: Unchanged

Number of bytes: 1

Number of cycles: 2

Correction value: 0

Example: ORW A

I S T N Z V C

– – – * * R –

0 4 2 6 A B 9 8 A

Before execution

0 4 2 6 A F B E A

After execution

CCR × × × × ×
T N Z V C

CCR × 1 0 0 ×
T N Z V C

243

MEMO

244

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

ORW (Or Word Data of Destination and Source to
Destination)

Take the logical OR of the word data specified by the first operand and the word data
specified by the second operand and store the result in the first operand.

Assembler format: ORW A,#imm16

ORW A,ear ORW A,eam

ORW ear,A ORW eam,A

Operation: (First operand) ← (First operand) or (Second operand) (Word logical OR)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Cleared

C: Unchanged

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (c) in the table, see Tables 8.4a and 8.4b.

I S T N Z V C

– – – * * R –

First operand A A A ear eam

Second operand #i16 ear eam A A

Number of bytes 3 2 2+ 2 2+

Number of cycles 2 3 4+(a) 3 5+(a)

Correction value 0 0 (c) 0 2×(c)

245

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: ORW 0E001H,A

Before execution After execution

Memory Memory

8 3 E002 D B E002
4 2 E001 6 3 E001

× × × × 5 9 6 3 A × × × × 5 9 6 3 A

CCR × × × × ×
T N Z V C

CCR × 1 0 0 ×
T N Z V C

246

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

POPW (Pop Word Data of Accumulator from Stack Memory)

Transfer the values of bits 0 to 15 of the accumulator (A) to bits 16 to 31. Then, the
word data of the memory location pointed to by the stack pointer (SP) is transferred to
bits 0 to 15 of A. After the data is transferred, 0002H is word-added to the value of SP
(word data).

Assembler format: POPW A

Operation: (A) ← ((SP)) (Word transfer)

(SP) ← (SP)+2 (Word addition)

CCR:

None of the flags is changed.

Number of bytes: 1

Number of cycles: 3

Correction value: (c)

For an explanation of (c), see Tables 8.4a and 8.4b.

Example: POPW A

I S T N Z V C

– – – – – – –

0 1 2 0SP 0 1 2 2 SP

Before execution After execution

Memory

0122

Memory

0122
1 0 0121 1 0 0121
A C 0120 A C 0120SP

SP

0 4 2 2 1 6 3 5A 1 6 3 5 1 0 A C A

CCR × × × × ×
T N Z V C

CCR × × × × ×
T N Z V C

247

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

POPW (Pop Word Data of AH from Stack Memory)

Transfer word data from the memory location pointed to by the stack pointer (SP) to
AH. Then, 0002H is word-added to the value of SP (word data).

Assembler format: POPW AH

Operation: (AH) ← ((SP)) (Word transfer)

(SP) ← (SP)+2 (Word addition)

CCR:

None of the flags is changed.

Number of bytes: 1

Number of cycles: 3

Correction value: (c)

For an explanation of (c), see Tables 8.4a and 8.4b.

Example: POPW AH

I S T N Z V C

– – – – – – –

0 4 2 2 1 6 3 5 A

0 1 2 0 SP

4 3 1 4 1 6 3 5 A

0 1 2 2 SP

Before execution After execution

Memory

0122

Memory

0122
4 3 0121 4 3 0121
1 4 0120 1 4 0120SP

SP

CCR × × × × ×
T N Z V C

CCR × × × × ×
T N Z V C

248

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

POPW (Pop Word Data of Program Status from Stack
Memory)

Transfer word data from the memory location pointed to by the stack pointer (SP) to
the processor status (PS). Bit 7 of the word data is ignored. Then, 0002H is word-
added to the value of SP (word data).

Assembler format: POPW PS

Operation: (PS) ← ((SP)) (Word transfer)

(SP) ← (SP)+2 (Word addition)

CCR:

The values of the corresponding bits of the stack memory are transferred.

Number of bytes: 1

Number of cycles: 4

Correction value: (c)

For an explanation of (c), see Tables 8.4a and 8.4b.

Example: POPW PS

I S T N Z V C

* * * * * * *

×CCR × × × × × ×
I S T N Z V C

ILM × × ×
ILM2 ILM1 ILM0

RP × × × × ×
MSB LSB

0 1 2 0SP

Before execution

Memory

0122
4 3 0121
1 4 0120SP

0CCR 0 1 0 1 0 0
I S T N Z V C

ILM 0 1 0
ILM2 ILM1 ILM0

RP 0 0 0 1 1
MSB LSB

0 1 2 2SP

After execution

Memory

0122
4 3 0121
1 4 0120

SP

249

MEMO

250

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

POPW (Pop Registers from Stack Memory)

Transfer the data pointed to by the stack pointer (SP) to the multiple general-purpose
word registers specified by the register list (rlst).

In assembler representation, register names are enumerated as a register list. After
assembly, the register list turns into byte data.

Assembler format: POPW rlst

Operation: (RWx) ← ((SP)) (Word transfer)

(SP) ← (SP)+2 (Word addition)

The above operation is repeated for all the registers specified by rlst.

CCR:

None of the flags is changed.

Number of bytes: 2

Number of cycles: 7 + 3 × (Number of transfers) + 2 × (Largest of the register numbers)
7 if rlst=0

Correction value: (Number of transfers)×(c)

For an explanation of (c), see Tables 8.4a and 8.4b.

I S T N Z V C

– – – – – – –

251

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: POPW RW0,RW4

3 4 F A SP

Before execution

34FE
0 4 34FD
0 3 34FC
0 2 34FB

SP

× ×RW7 × ×

× ×RW0 × ×
× ×RW1 × ×
× ×RW2 × ×
× ×RW3 × ×
× ×RW4 × ×
× ×RW5 × ×
× ×RW6 × ×

0 1 34FA

Memory

3 4 F E SP

After execution

34FE
0 4 34FD
0 3 34FC
0 2 34FB

SP

× ×RW7 × ×

0 2RW0 0 1
× ×RW1 × ×
× ×RW2 × ×
× ×RW3 × ×
0 4RW4 0 3
× ×RW5 × ×
× ×RW6 × ×

0 1 34FA

Memory

252

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

PUSHW (Push Word Data of Inherent Register to Stack
Memory)

Decrement the value of the stack pointer (SP) by two words and transfer the word data
of the register to the memory location pointed to by the resulting SP value.

Assembler format: PUSHW A

PUSHW AH

PUSHW PS

Operation: (SP) ← (SP)–2 (Word subtraction)

((SP)) ← (Operand) (Word transfer)

CCR:

None of the flags is changed.

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (c) in the table, see Tables 8.4a and 8.4b.

Example: PUSHW A

I S T N Z V C

– – – – – – –

Operand A AH PS

Number of bytes 1 1 1

Number of cycles 4 4 4

Correction value (c) (c) (c)

0 1 2 2 SP 0 1 2 0 SP

Before execution After execution

Memory

0122

Memory

0122
× × 0121 4 5 0121
× × 0120 A 4 0120

SP

SP

4 5 A 4 A 4 5 A 4 A

CCR × × × × ×
T N Z V C

CCR × × × × ×
T N Z V C

253

MEMO

254

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

PUSHW (Push Registers to Stack Memory)

Transfer the contents of the multiple general-purpose word registers specified by the
register list (rlst) to the memory location pointed to by the stack pointer (SP).

In assembler representation, register names are enumerated as a register list. After
assembly, the register list turns into byte data.

Assembler format: PUSHW rlst

Operation: (SP) ← (SP)–2 (Word subtraction)

((SP))← (RWx) (Word transfer)

The above operation is repeated for all the registers specified by rlst.

CCR:

None of the flags is changed.

Number of bytes: 2

Number of cycles: 29 + 3 × (Number of transfers) – 3 × (8 – Smallest of the register numbers)
8 if rlst = 0

Correction value: (Number of transfers)×(c)

For an explanation of (c), see Tables 8.4a and 8.4b.

I S T N Z V C

– – – – – – –

255

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: PUSHW RW1,RW3

3 4 F ESP

Before execution

34FE
× × 34FD
× × 34FC
× × 34FB

SP

× ×RW7 × ×

× ×RW0 × ×
3 5RW1 A 4
× ×RW2 × ×
6 DRW3 F 0
× ×RW4 × ×
× ×RW5 × ×
× ×RW6 × ×

× × 34FA

Memory

3 4 F A SP

After execution

34FE
6 D 34FD
F 0 34FC
3 5 34FB

SP

× ×RW7 × ×

× ×RW0 × ×
3 5RW1 A 4
× ×RW2 × ×
6 DRW3 F 0
× ×RW4 × ×
× ×RW5 × ×
× ×RW6 × ×

A 4 34FA

Memory

256

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

RET (Return from Subroutine)

Cause a branch to the address pointed to by the stack pointer (SP). If this instruction
is used in combination with a subroutine call instruction (CALL, CALLV), control
returns to the instruction following the subroutine call instruction after the branch
operation is completed.

Assembler format: RET

Operation: (PC) ← ((SP)) (Word transfer)

(SP) ← (SP)+2 (Word addition)

CCR:

None of the flags is changed.

Number of bytes: 1

Number of cycles: 4

Correction value: (c)

For an explanation of (c), see Tables 8.4a and 8.4b.

Example: RET

I S T N Z V C

– – – – – – –

Before execution

Memory

0064
F C 0063
2 2 0062

0 0 6 2 SP

SP

F 0 0 2 PC

After execution

Memory

0064
F C 0063
2 2 0062

0 0 6 4 SP

SP

F C 2 2 PC

257

MEMO

258

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

RETI (Return from Interrupt)

This instruction returns the data in the memory that is indicated by (SSP) to detect
interrupt requests performed using IF or ILM.
When the next interrupt request is received, the procedure branches to the detected
interruption vector. If no next interrupt is received, the procedure will return from the
interruption process.

Assembler format: RETI

Operation: (1) If the next interrupt is accepted

(PS) ← ((SSP))

(S) ← 1, (PCB), (PC) ← Interrupt vector address

(ILM) ← Accepted interrupt level

DTB, PCB, DPR, ADB, AL, and AH are not restored.

(2) If control is returned from the next interrupt

(PS) ← ((SSP)), (SSP) ← (SSP)+2;

(PC) ← ((SSP)), (SSP) ← (SSP)+2;

(DTB),(PCB) ← ((SSP)), (SSP) ← (SSP)+2;

(DPR),(ADB) ← ((SSP)), (SSP) ← (SSP)+2;

(AL) ← ((SSP)), (SSP) ← (SSP)+2;

(AH) ← ((SSP)), (SSP) ← (SSP)+2

CCR (1) If the next interrupt is accepted (2) If control is returned from the next
 interrupt

I: Restored to the saved I value. I: Restored to the saved I value.

S: Set S: Restored to the saved S value.

T: Restored to the saved T value. T: Restored to the saved T value.

N: Restored to the saved N value. N: Restored to the saved N value.

Z: Restored to the saved Z value. Z: Restored to the saved Z value.

V: Restored to the saved V value. V: Restored to the saved V value.

C: Restored to the saved C value. C: Restored to the saved C value.

Number of bytes: 1

Number of cycles: 15 if the next interrupt is accepted; 17 if control is returned from the next interrupt

Correction value: 3 × (b) + 2 × (c) if the next interrupt is accepted; 6 × (c) if control is returned from the next

interrupt

For an explanation of (b) and (c), see Tables 8.4a and 8.4b.

I S T N Z V C I S T N Z V C

* S * * * * * * * * * * * *

259

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: RETI (if control is returned from the interrupt)

× × × ×
PC

× ×
DTB

× × × × × × × ×
A

Memory

038000
 F F 037FFF
 E E 037FFE

SSP

× ×
PCB

× ×
DPR

× ×
ADB

× ×
ILM

× ×
RP

 0 3
SSB

7 F F 4
SSP

D D 037FFD
C C 037FFC
B B 037FFB
A A 037FFA
9 9 037FF9
8 8 037FF8
7 7 037FF7
6 6 037FF6
6 1 037FF5
8 0 037FF4

Before execution

7 7 6 6
PC

9 9
DTB

F F F E D D C C
A

Memory

038000
F F 037FFF
E E 037FFE

SSP

8 8
PCB

B B
DPR

A A
ADB

0 3
ILM

0 1
RP

 0 3
SSB

 8 0 0 0
SSP

D D 037FFD
C C 037FFC
B B 037FFB
A A 037FFA
9 9 037FF9
8 8 037FF8
7 7 037FF7
6 6 037FF6
6 1 037FF5
8 0 037FF4

After execution

CCR

I S T N Z V C

× × × × × × ×
I S T N Z V C
0 0 0 0 0 0 0

CCR

260

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

RETP (Return from Physical Address)

Cause a branch to the physical address pointed to by the stack pointer (SP). If this
instruction is used in combination with the CALLP instruction, control returns to the
instruction following the CALLP instruction after the branch operation is completed.

Assembler format: RETP

Operation: (PC) ← ((SP)), (SP) ← (SP)+2 (Word addition)

(PCB) ← ((SP)) (Byte transfer), (SP) ← (SP)+2 (Word addition)

CCR:

None of the flags is changed.

Number of bytes: 1

Number of cycles: 6

Correction value: (d)

For an explanation of (d), see Tables 8.4a and 8.4b.

Example: RETP

I S T N Z V C

– – – – – – –

F 8 F CSP

Before execution

Memory

× × 15F900
0 0 15F8FF

4 3 15F8FD
A D 15F8FE

SP

2 2 F CPC

1 5USB0 8PCB

4 5 15F8FC

F 9 0 0SP

After execution

Memory

× × 15F900
0 0 15F8FF

4 3 15F8FD
A D 15F8FE

SP

4 3 4 5PC

1 5USBA DPCB

4 5 15F8FC

CCR × 0 × × × × ×
I S T N Z V C

CCR × 0 × × × × ×
I S T N Z V C

261

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

ROLC (Rotate Byte Data of Accumulator with Carry to Left)

Rotate or shift the byte data specified by the operand to the left by one bit, including
the carry bit (C). The most significant bit of the operand is placed in the carry bit (c).

Assembler format: ROLC A

ROLC ear ROLC eam

Operation:

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the shifting result is “1”, cleared otherwise.

Z: Set when the shifting result is zero, cleared otherwise.

V: Unchanged

C: Stores the bit shifted out from the MSB of A.

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (b) in the table, see Tables 8.4a and 8.4b.

Example: ROLC A

I S T N Z V C

– – – * * – *

Operand A ear eam

Number of bytes 2 2 2+

Number of cycles 2 3 5+(a)

Correction value 0 0 2×(b)

MSB LSB CA or operand

× × × × × × 3 2 A

Before execution

× × × × × × 6 4 A

After execution

CCR × × × × 0
T N Z V C

CCR × 0 0 × 0

T N Z V C

262

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

RORC (Rotate Byte Data of Accumulator with Carry to Right)

Rotate or shift the byte data specified by the operand to the right by one bit, including
the carry bit (C). The least significant bit of the operand is placed in the carry bit (c).

Assembler format: RORC A

RORC ear RORC eam

Operation:

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the shifting result is “1”, cleared otherwise.

Z: Set when the shifting result is zero, cleared otherwise.

V: Unchanged

C: Stores the bit shifted out from the LSB of A.

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (b) in the table, see Tables 8.4a and 8.4b.

Example: RORC A

I S T N Z V C

– – – * * – *

Operand A ear eam

Number of bytes 2 2 2+

Number of cycles 2 3 5+(a)

Correction value 0 0 2×(b)

MSB LSB CA or operand

× × × × × × 3 2

CCR

A

Before execution

× × × × × × 1 9

CCR

A

After execution

× × × × 0
T N Z V C

× 0 0 × 0
T N Z V C

263

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

SBBS (Set Bit and Branch if Bit Set)

Cause a branch if the bit data specified by the first operand is 1. Control is transferred
to the address resulting from word-adding the value resulting from sign-extending the
second operand to the address of the instruction following the SBBS instruction.

After the instruction has been executed, the bit specified by the first operand is set to
1.

Assembler format: SBBS addr16:bp,rel

Operation: If the condition is satisfied:

(PC) ← (PC)+<Number of bytes>+rel (Word addition), (addr16:bp) ← 1

If the condition is not satisfied:

(PC) ← (PC)+<Number of bytes> (Word addition), (addr16:bp) ← 1

CCR:

I, S, T, and N: Unchanged

Z: Set when the bit data is zero, cleared otherwise.

V and C: Unchanged

Number of bytes: 5

Number of cycles: 9 if the condition is not satisfied; 10 if the condition is satisfied

Correction value: 2×(b)

For an explanation of (b), see Tables 8.4a and 8.4b.

Example: SBBS 1234H:5,20H

I S T N Z V C

– – – – * – –

Before execution

Memory

× ×
7 F 1234
× ×

E 1 0 0PC

After execution

Memory

× ×
7 F 1234
× ×

E 1 2 5PC

264

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

SCEQ (Scan String Byte Until Equal)

Compare the byte data specified by AH in the space specified by <bank> with the data
of AL. The address is incremented/decremented and RW0 is decremented until the
byte data matches the data or RW0 becomes equal to zero.

Four types of registers PCB, DTB, ADB, and SPB can be specified by <bank>. By
default, DTB is assumed. The address can be either incremented or decremented. By
default, the address is incremented.

If RW0 is equal to zero, comparison is not performed. If an interrupt occurs during the
execution of the instruction, the execution of the instruction is suspended. After the
interrupt has been handled, the execution of the instruction is resumed.

Assembler format: SCEQ [<bank>] SCEQI [<bank>] (When the address is incremented)

SCEQD [<bank>] (When the address is decremented)

Operation: The following operation is repeated until RW0 = 0 or ((AH)) = (AL) (Byte comparison):

(AH) ← (AH)±1

(RW0) ← (RW0)–1

CCR:

I, S, and T: Unchanged

N: Unchanged if the initial value of RW0 is zero. If the initial value of RW0 is not
zero, N is set when the MSB of the last compare operation result is “1”,
cleared otherwise.

Z: Unchanged if the initial value of RW0 is zero. If the initial value of RW0 is not
zero, Z is set when a match with the contents of AL is found; cleared when
the instruction terminates with RW0 being set to zero.

V: Unchanged if the initial value of RW0 is zero. If the initial value of RW0 is not
zero, V is set when an overflow has occurred as a result of the last compare
operation; cleared otherwise.

C: Unchanged if the initial value of RW0 is zero. If the initial value of RW0 is not
zero, V is set when a borrow has occurred as a result of the last compare
operation; cleared otherwise.

I S T N Z V C

– – – * * * *

265

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Number of bytes: 2

Number of cycles: 5 when RW0 is 0, 4 + 7 × (RW0) when count-out is detected, and 7n + 5 when the data in
the AL register matches the byte data specified by the AH register in the space that is
specified by bank

Correction value: (Number of times the operation was repeated)×(b)

For an explanation of (b), see Tables 8.4a and 8.4b.

Example: SCEQ

0 1 0 0RW0

Before execution

031586
4 6 031585
4 8 031584

0 3DTB

1 5 8 0 0 0 4 6
AH AL

4 9 031583

0 0 F ARW0 0 3DTB

1 5 8 6 0 0 4 6
AH AL

4 D 031582
4 E 031581
5 4 031580AH

Memory

After execution

131586
4 6 031585
4 8 031584
4 9 031583
4 D 031582
4 E 031581
5 4 031580

AH
Memory

CCR × × × × ×
T N Z V C

CCR × × × × ×
T N Z V C

266

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

SCWEQ (Scan String Word Until Equal)

Compare the word data specified by AH in the space specified by <bank> with the data
of AL. The address is incremented/decremented and RW0 is decremented until the
word data matches the data or RW0 becomes equal to zero.

Four types of registers PCB, DTB, ADB, and SPB can be specified by <bank>. By
default, DTB is assumed. The address can be either incremented or decremented. By
default, the address is incremented.

If RW0 is equal to zero, comparison is not performed. If an interrupt occurs during the
execution of the instruction, the execution of the instruction is suspended. After the
interrupt has been handled, the execution of the instruction is resumed.

Assembler format: SCWEQ [<bank>] SCWEQI [<bank>] (When the address is incremented)

SCWEQD [<bank>] (When the address is decremented)

Operation: The following operation is repeated until RW0 = 0 or ((AH)) = (AL) (Word comparison):

(AH) ← (AH)±2

(RW0) ← (RW0)–1

CCR:

I, S, and T: Unchanged

N: Unchanged if the initial value of RW0 is zero. If the initial value of RW0 is not
zero, N is set when the MSB of the last compare operation result is “1”,
cleared otherwise.

Z: Unchanged if the initial value of RW0 is zero. If the initial value of RW0 is not
zero, Z is set when a match with the contents of AL is found; cleared when
the instruction terminates with RW0 being set to zero.

V: Unchanged if the initial value of RW0 is zero. If the initial value of RW0 is not
zero, V is set when an overflow has occurred as a result of the last compare
operation; cleared otherwise.

C: Unchanged if the initial value of RW0 is zero. If the initial value of RW0 is not
zero, V is set when a borrow has occurred as a result of the last compare
operation; cleared otherwise.

I S T N Z V C

– – – * * * *

267

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Number of bytes: 2

Number of cycles: 5 when RW0 is 0, 4 + 7 × (RW0) when count-out is detected, and 7n + 5 when the data in
the AL register matches the byte data specified by the AH register in the space that is
specified by bank

Correction value: (Number of times the operation was repeated×(c)

For an explanation of (c), see Tables 8.4a and 8.4b.

Example: SCWEQ

0 0 0 3RW0

Before execution

E 6 DEC006
E 5 DEC005
E 4 DEC004

D EDTB

AH AL

E 3 DEC003

0 0 0 0RW0 D EDTB

AH AL

E 2 DEC002
E 1 DEC001
E 0 DEC000AH

Memory

After execution

E 6 DEC006
E 5 DEC005
E 4 DEC004
E 3 DEC003
E 2 DEC002
E 1 DEC001
E 0 DEC000

AH

Memory

C 0 0 0 0 0 F F C 0 0 6 0 0 F F

CCR × × × × ×
T N Z V C

CCR × 1 0 0 1

T N Z V C

268

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

SETB (Set Bit)

Set the contents of the bit address specified by the operand to 1.

Assembler format: SETB addr16:bp

SETB dir:bp

SETB io:bp

Operation: (Operand) b ← 1 (Bit transfer)

CCR:

None of the flags is changed.

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (b) in the table, see Tables 8.4a and 8.4b.

Example: SETB 0AA55H:4

I S T N Z V C

– – – – – – –

Operand ad16:bp dir:bp io:bp

Number of bytes 4 3 3

Number of cycles 7 7 7

Correction value 2×(b) 2×(b) 2×(b)

Before execution

Memory

× ×
6 F AA55
× ×

After execution

Memory

× ×
7 F AA55
× ×

0 0 0 0 0CCR
T N Z V C

0 0 0 0 0CCR
T N Z V C

269

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

SUB (Subtract Byte Data of Source from Destination to
Destination)

Subtract the byte data specified by the second operand from the byte data specified by
the first operand and store the result in the first operand. If the first operand is A,
zeros are transferred to bits 8 to 15 of A.

Assembler format: SUB A,#imm8 SUB A,dir

SUB A,ear SUB A,eam

SUB ear,A SUB eam,A

Operation: (First operand) ← (First operand)–(Second operand) (Byte subtraction)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Set when an overflow has occurred as a result of the operation, cleared
otherwise.

C: Set when a borrow has occurred as a result of the operation, cleared
otherwise.

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (b) in the table, see Tables 8.4a and 8.4b.

Example: SUB A,#22H

I S T N Z V C

– – – * * * *

First operand A A A A ear eam

Second operand #im8 dir ear eam A A

Number of bytes 2 2 2 2+ 2 2+

Number of cycles 2 5 3 4+(a) 3 5+(a)

Correction value 0 (b) 0 (b) 0 2×(b)

Before execution After execution

CCR × × × × ×
T N Z V C

CCR × 1 0 0 1

T N Z V C

× × × × 4 9 0 1 A × × × × 0 0 D F A

270

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

SUBC (Subtract Byte Data of AL from AH with Carry to AL)

Subtract the low-order byte data of AL and the carry bit (C) from the low-order byte of
AH and store the result in AL. Zeros are transferred to bits 8 to 15 of the accumulator
(A).

Assembler format: SUBC A

Operation: (AL) ← (AH)–(AL)–(C) (Byte subtraction with a carry)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Set when an overflow has occurred as a result of the operation, cleared
otherwise.

C: Set when a borrow has occurred as a result of the operation, cleared
otherwise.

Number of bytes: 1

Number of cycles: 2

Correction value: 0

Example: SUBC A

I S T N Z V C

– – – * * * *

0 5 0 5 0 0 D 4 A

Before execution

0 5 0 5 0 0 3 0 A

After execution

CCR × × × × ×
T N Z V C

CCR × 1 0 0 1

T N Z V C

271

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

SUBC (Subtract Byte Data of Effective Address from
Accumulator with Carry to Accumulator)

Subtract the byte data specified by the second operand and the carry bit (C) from the
byte data of the accumulator (A) and store the result in A. Zeros are transferred to bits
8 to 15 of A.

Assembler format: SUBC A,ear SUBC A,eam

Operation: (A) ← (A)–(Second operand)–(C) (Byte subtraction with a carry)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Set when an overflow has occurred as a result of the operation, cleared
otherwise.

C: Set when a borrow has occurred as a result of the operation, cleared
otherwise.

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (b) in the table, see Tables 8.4a and 8.4b.

Example: SUBC A,R1

I S T N Z V C

– – – * * * *

First operand A A

Second operand ear eam

Number of bytes 2 2+

Number of cycles 3 4+(a)

Correction value 0 (b)

Before execution After execution

5 4R1 5 4R1

× × × × 0 0 3 5 A × × × × 0 0 E 1 A

CCR × × × × 0

T N Z V C

CCR × 1 0 0 1

T N Z V C

272

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

SUBCW (Subtract Word Data of Effective Address from
Accumulator with Carry to Accumulator)

Subtract the word data specified by the second operand and the carry bit (C) from the
low-order word data of the accumulator (A) and store the result in A.

Assembler format: SUBCW A,ear SUBCW A,eam

Operation: (A) ← (A)–(Second operand)–(C) (Byte subtraction with a carry)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Set when an overflow has occurred as a result of the operation, cleared
otherwise.

C: Set when a borrow has occurred as a result of the operation, cleared
otherwise.

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (c) in the table, see Tables 8.4a and 8.4b.

I S T N Z V C

– – – * * * *

First operand A A

Second operand ear eam

Number of bytes 2 2+

Number of cycles 3 4+(a)

Correction value 0 (b)

273

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: SUBCW A,0E024H

Before execution After execution

Memory Memory

A 9 E025 A 9 E025
5 B E024 5 B E024

× × × × 7 5 5 8A × × × × C B F C A

CCR × × × × 1
T N Z V C

CCR × 1 0 0 1

T N Z V C

274

SUBDC (Subtract Decimal Data of AL from AH with Carry to AL)

Subtract the low-order byte data AL and the carry bit (C) from the low-order byte data of
AH and store the result in AL. Zeros are transferred to bits 8 to 15 of A.

Assembler format: SUBDC A

Operation: (AL) ← (AH)–(AL)–(C) (Decimal subtraction with a carry)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Undefined

C: Set when a borrow has occurred as a result of the decimal operation, cleared
otherwise.

Number of bytes: 1

Number of cycles: 3

Correction value: 0

Example: SUBDC A

I S T N Z V C

– – – * * * *

× × 8 6 × × 8 6 A

Before execution

× × 8 6 0 0 0 0 A

After execution

CCR × × × × 0

T N Z V C

CCR × 0 1 0 0

T N Z V C

275

MEMO

276

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

SUBL (Subtract Long Word Data of Source from Destination
to Destination)

Subtract the long word data specified by the second operand from the long word data
of the accumulator (A) and store the result in A.

Assembler format: SUBL A,#imm32

SUBL A,ear SUBL A,eam

Operation: (First operand) ← (First operand)–(Second operand) (Long word subtraction)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Set when an overflow has occurred as a result of the operation, cleared
otherwise.

C: Set when a borrow has occurred as a result of the operation, cleared
otherwise.

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (d) in the table, see Tables 8.4a and 8.4b.

I S T N Z V C

– – – * * * *

First operand A A A

Second operand #i32 ear eam

Number of bytes 5 2 2+

Number of cycles 4 6 7+(a)

Correction value 0 0 (d)

277

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: SUBL A,0FD12H

3 4 B 3 F 2 0 1 A

Before execution

E 2 5 4 C 0 4 4 A

After execution

Memory Memory

FD16 FD16
5 2 FD15 5 2 FD15
5 F FD14 5 F FD14
3 1 FD13 3 1 FD13
B D FD12 B D FD12

CCR × × × × ×
T N Z V C

CCR × 1 0 0 1

T N Z V C

278

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

SUBW (Subtract Word Data of Source from Destination to
Destination)

Subtract the word data specified by the second operand from the word data specified
by the first operand and store the result in the first operand.

Assembler format: SUBW A,#imm16

SUBW A,ear SUBW A,eam

SUBW ear,A SUBW eam,A

Operation: (First operand) ← (First operand)–(Second operand) (Word subtraction)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Set when an overflow has occurred as a result of the operation, cleared
otherwise.

C: Set when a borrow has occurred as a result of the operation, cleared
otherwise.

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (c) in the table, see Tables 8.4a and 8.4b.

I S T N Z V C

– – – * * * *

First operand A A A ear eam

Second operand #i16 ear eam A A

Number of bytes 3 2 2+ 2 2+

Number of cycles 2 3 4+(a) 3 5+(a)

Correction value 0 0 (c) 0 2×(c)

279

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: SUBW @RW0+,A

× × × × 3 1 0 4 A

E 2 A 4 RW0

× × × × 3 1 0 4 A

E 2 A 6 RW0

Before execution After execution

Memory Memory

5 D E2A5 2 C E2A5
A B E2A4 A 7 E2A4

CCR × × × × ×
T N Z V C

CCR × 0 0 0 0

T N Z V C

280

SUBW (Subtract Word Data of AL from AH to AL)

Subtract the word data of AL from the word data of AH and store the result to AL.

Assembler format: SUBW A

Operation: (AL) ← (AH)–(AL) (Word subtraction)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Set when an overflow has occurred as a result of the operation, cleared
otherwise.

C: Set when a borrow has occurred as a result of the operation, cleared
otherwise.

Number of bytes: 1

Number of cycles: 2

Correction value: 0

Example: SUBW A

I S T N Z V C

– – – * * * *

8 3 A 2 1 0 1 9 A

Before execution

8 3 A 2 7 3 8 9 A

After execution

CCR × × × × ×
T N Z V C

CCR × 0 0 1 0

T N Z V C

281

SWAP (Swap Byte Data of Accumulator)

Swap the high- and low-order bytes of the word data of the accumulator (A) with each
other.

Assembler format: SWAP

Operation: (A) 0 to 7 (A) 8 to 15 (Byte swapping)

CCR:

None of the flags is changed.

Number of bytes: 1

Number of cycles: 3

Correction value: 0

Example: SWAP

I S T N Z V C

– – – – – – –

× × × × 0 6 9 0 A

Before execution

× × × × 9 0 0 6 A

After execution

CCR × × × × ×
T N Z V C

CCR × × × × ×
T N Z V C

282

SWAPW (Swap Word Data of Accumulator)

Swap the high- and low-order words of the long word data of the accumulator (A) with
each other.

Assembler format: SWAPW / XCHW A,T

Operation: Bits 0 to 15 of A Bits 16 to 31 of A (Word swapping)

CCR:

None of the flags is changed.

Number of bytes: 1

Number of cycles: 2

Correction value: 0

Example: SWAPW

I S T N Z V C

– – – – – – –

1 9 8 6 9 8 6 1 A

Before execution

9 8 6 1 1 9 8 6 A

After execution

CCR × × × × ×
T N Z V C

CCR × × × × ×
T N Z V C

283

UNLINK (Unlink and Create New Stack Frame)

Restore an old frame pointer from a stack.

Assembler format: UNLINK

Operation: (sp) ← (RW3), (RW3) ← ((sp)), (sp) ← (sp)+2

CCR:

None of the flags is changed.

Number of bytes: 1

Number of cycles: 5

Correction value: (c)

For an explanation of (c), see Tables 8.4a and 8.4b.

Example: UNLINK

I S T N Z V C

– – – – – – –

Before execution

Memory

A 0
4 6 E020

E 0 0 0SP

SP × × E000

E 0 2 0RW3

E 0 2 2SP

A 0 4 6RW3

After execution

Memory

× × E022

4 6 E020

SP
A 0 E021

284

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

WBTc (Wait Until Bit Condition Satisfied)

This instruction keeps reading data from the bit address specified by the operand until
that data satisfies the conditions. Once the data at the specified bit address satisfies
the conditions, control is transferred to the instruction subsequent to the WBTc
instruction.

Assembler format: WBTC io:bp

WBTS io:bp

Operation:

Data is read from the bit address specified by io:bp until the data satisfies the condition. If
the data from the bit address satisfies the condition, control is transferred to the next
instruction.

Interrupts are acceptable while the read operation is repeated with the condition not
satisfied. If an interrupt is generated in this state, the RETI instruction causes control to
return to the WBTc instruction, not to the instruction following the WBTc instruction.

CCR:

None of the flags is changed.

Number of bytes:

Number of cycles:

Correction value:

Example: WBTS 34H:7

I S T N Z V C

– – – – – – –

Instruction WBTC WBTS

Condition Bit data=0 Bit data=1
Number of bytes 3 3

Number of cycles Undefined Undefined

Correction value
Until the condition is sat-
isfied

Until the condition is sat-
isfied

Before execution

Memory

× ×
7 F 0034H

× ×

E 1 0 0PC

After execution

Peripheral
register

Data is read from address 34H until bit 7 is set to 1
(because of resource operation, for example).

285

XCH (Exchange Byte Data of Source to Destination)

Exchange the byte data specified by the first operand with that specified by the second
operand.

If the first operand is A, the high-order byte of AL is set to 00H.

Assembler format: XCH A,ear XCH A,eam

XCH Ri,ear XCH Ri,eam

Operation: (First operand) (Second operand) (Byte exchange)

CCR:

None of the flags is changed.

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (b) in the table, see Tables 8.4a and 8.4b.

Example: XCH R4,@RW0+

I S T N Z V C

– – – – – – –

First operand A A Ri Ri

Second operand ear eam ear eam

Number of bytes 2 2+ 2 2+

Number of cycles 4 5+(a) 7 9+(a)

Correction value 0 2×(b) 0 2×(b)

0 0 6 0RW0

F 1R4

Before execution After execution

Memory

0061

Memory

0061

2 2 0060 F 1 0060

0 0 6 1 RW0

2 2R4

RW0
RW0

CCR × × × × ×
T N Z V C

CCR × × × × ×
T N Z V C

286

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

XCHW (Exchange Word Data of Source to Destination)

Exchange the word data specified by the first operand with that specified by the
second operand.

Assembler format: XCHW A,ear XCHW A,eam

XCHW RWi,ear XCHW RWi,eam

Operation: (First operand) (Second operand) (Word exchange)

CCR:

None of the flags is changed.

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (c) in the table, see Tables 8.4a and 8.4b.

Example: XCHW A,@RW0

I S T N Z V C

– – – – – – –

First operand A A RWi RWi

Second operand ear eam ear eam

Number of bytes 2 2+ 2 2+

Number of cycles 4 5+(a) 7 9+(a)

Correction value 0 2×(c) 0 2×(c)

× × × × 3 4 B 4 A

RW0

× × × × 2 D 5 8 A

RW0

Before execution After execution

Memory Memory

2 D E002 3 4 E002
5 8 E001 B 4 E001RW0 RW0

E 0 0 1 E 0 0 1

CCR × × × × ×
T N Z V C

CCR × × × × ×
T N Z V C

287

MEMO

288

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

XOR (Exclusive Or Byte Data of Destination and Source to
Destination)

Take the logical exclusive OR of the byte data specified by the first operand and the
byte data specified by the second operand and store the result in the first operand.

Assembler format: XOR A,#imm8

XOR A,ear XOR A,eam

XOR ear,A XOR eam,A

Operation: (First operand) ← (First operand) xor (Second operand) (Byte logical exclusive OR)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Cleared

C: Unchanged

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (b) in the table, see Tables 8.4a and 8.4b.

I S T N Z V C

– – – * * R –

First operand A A A ear eam

Second operand #im8 ear eam A A

Number of bytes 2 2 2+ 2 2+

Number of cycles 2 3 4+(a) 3 5+(a)

Correction value 0 0 (b) 0 2×(b)

289

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: XOR 0052H,A

× × × × 0 0 5 5A

Before execution

× × × × 0 0 5 5A

After execution

Memory Memory

F A 000052 A F 000052

CCR × × × × ×
T N Z V C

CCR × 1 0 0 ×
T N Z V C

290

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

XORL (Exclusive Or Long Word Data of Destination and
Source to Destination)

Take the logical exclusive OR of the long word data of the accumulator (A) and that
specified by the second operand and store the result in A.

Assembler format: XORL A,ear XORL A,eam

Operation: (A) ← (A) xor (Second operand) (Long word logical exclusive OR)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Cleared

C: Unchanged

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (d) in the table, see Tables 8.4a and 8.4b.

I S T N Z V C

– – – * * R –

First operand A A

Second operand ear eam

Number of bytes 2 2+

Number of cycles 6 7+(a)

Correction value 0 (d)

291

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: XORL A,0FFF0H

8 2 5 2 F E A C A

Before execution

7 D 0 7 5 4 A C A

After execution

Memory Memory

F F FFF3
5 5 FFF2
A A FFF1
0 0 FFF0

F F FFF3
5 5 FFF2
A A FFF1
0 0 FFF0

CCR × × × × ×
T N Z V C

CCR × 0 0 0 ×
T N Z V C

292

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

XORW (Exclusive Or Word Data of AH and AL to AL)

Take the logical exclusive OR of the word data of AH and that of AL and store the result
in AL.

Assembler format: XORW A

Operation: (AL) ← (AH) xor (AL) (Word logical exclusive OR)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Cleared

C: Unchanged

Number of bytes: 1

Number of cycles: 2

Correction value: 0

Example: XORW A

I S T N Z V C

– – – * * R –

0 4 2 6 A B 9 8 A

Before execution

0 4 2 6 A F B E A

After execution

CCR × × × × ×
T N Z V C

CCR × 1 0 0 ×
T N Z V C

293

MEMO

294

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

XORW (Exclusive Or Word Data of Destination and Source to
Destination)

Take the logical exclusive OR of the word data specified by the first operand and the
word data specified by the second operand and store the result in the first operand.

Assembler format: XORW A,#imm16

XORW A,ear XORW A,eam

XORW ear,A XORW eam,A

Operation: (First operand) ← (First operand) xor (Second operand) (Word logical exclusive OR)

CCR:

I, S, and T: Unchanged

N: Set when the MSB of the operation result is “1”, cleared otherwise.

Z: Set when the operation result is zero, cleared otherwise.

V: Cleared

C: Unchanged

Number of bytes:

Number of cycles:

Correction value:

For an explanation of (a) and (c) in the table, see Tables 8.4a and 8.4b.

I S T N Z V C

– – – * * R –

First operand A A A ear eam

Second operand #i16 ear eam A A

Number of bytes 3 2 2+ 2 2+

Number of cycles 2 3 4+(a) 3 5+(a)

Correction value 0 0 (c) 0 2×(c)

295

CHAPTER 9 DETAILED EXECUTION INSTRUCTIONS

Example: XORW 0E001H,A

Before execution After execution

Memory Memory

8 3 E002
4 2 E001

D A E002
2 1 E001

× × × × 5 9 6 3 A × × × × 5 9 6 3 A

CCR × × × × ×
T N Z V C

CCR × 1 0 0 ×
T N Z V C

296

ZEXT (Zero Extend from Byte Data to Word Data)

Transfer zeros to bits 8 to 15 of the accumulator (A).

Assembler format: ZEXT

Operation: Bits 8 to 15 of A ← 00H

CCR:

I, S, and T: Unchanged

N: Cleared

Z: Set when the zero-extended data is zero, cleared otherwise.

V and C: Unchanged

Number of bytes: 1

Number of cycles: 1

Correction value: 0

Example: ZEXT

I S T N Z V C

– – – R * – –

× × × × × × A

Before execution

× × × × 0 0 8 0 A

After execution

8 0

CCR × × × × ×
T N Z V C

CCR × 0 0 × ×
T N Z V C

297

ZEXTW (Zero Extend from Word Data to Long Word Data)

Transfer zeros to bits 16 to 31 of the accumulator (A).

Assembler format: ZEXTW

Operation: Bits 16 to 31 of A ← 0000H

CCR:

I, S, and T: Unchanged

N: Cleared

Z: Set when the zero-extended data is zero, cleared otherwise.

V and C: Unchanged

Number of bytes: 1

Number of cycles: 1

Correction value: 0

Example: ZEXTW

I S T N Z V C

– – – R * – –

× × × × F F 8 0 A

Before execution

0 0 0 0 F F 8 0A

After execution

CCR × × × × ×
T N Z V C

CCR × 0 0 × ×
T N Z V C

298

MEMO

299

APPENDIX

This appendix includes lists and maps of instructions for the F2MC-16LX.

Appendix A Explanation of Instruction Lists

Appendix B F2MC-16LX Instruction Lists (340 Instructions)

Appendix C F2MC-16LX Instruction Maps

300

Appendix A Explanation of Instruction Lists

Appendix A Explanation of Instruction Lists

This section explains items and symbols used in each instruction list included in
Appendix B.

A.1 Items Used in Instruction Lists

A.2 Symbols Used in Instruction Lists

A.3 Effective Address Field

A.4 Calculating the Number of Execution Cycles

301

Appendix A Explanation of Instruction Lists

A.1 Items Used in Instructions Lists

Table A.1 explains the items used in the instruction lists.

Explanation of the Items Used in the Instruction Lists

Table A.1 Explanation of the Items Used in the Instruction Lists

Item Description

Mnemonic
Upper-case letters and symbols: Described as they appear in assembler.
Lower-case letters: Replaced when described in assembler.
Numbers after lower-case letters: Indicate the bit width within the instruction.

Indicates the number of bytes.

~
Indicates the number of cycles.
See Table A.4a for details about meanings of letters in items.

RG
Indicates the register access count during execution of instruction.
Used to calculate compensation values for CPU intermittent operation.

B

Indicates the compensation value for calculating the number of actual cycles
during execution of instruction.
The number of actual cycles during execution of instruction is the
compensation value summed with the value in the “~” column.

Operation Indicates operation of instruction.

LH

Indicates special operations involving bits 15 through 08 of the accumulator.
Z: Transfers “0”.
X: Sign-extended transfer through sign extension.
- : Transfers nothing.

AH

Indicates special operations involving the high-order 16 bits in the
accumulator.

* : Transfers from AL to AH.
- : No transfer.
Z: Transfers 00 to AH.
X: Transfers 00H or FFH to AH using sign extension AL.

I

Indicates the status of each of the following flags: I (interrupt enable),
S (stack), T (sticky bit), N (negative), Z (zero), V (overflow), and C (carry).

* : Changes due to execution of instruction.
- : No change.
S: Set by execution of instruction.
R: Reset by execution of instruction.

S

T

N

Z

V

C

RMW

Indicates whether the instruction is a read-modify-write instruction (a single
instruction that reads data from memory, etc., processes the data, and then
writes the result to memory.).

*: Instruction is a read-modify-write instruction.
-: Instruction is not a read-modify-write instruction.

Note: A read-modify-write instruction cannot be used on addresses that
have different meanings depending on whether they are read or
written.

302

Appendix A Explanation of Instruction Lists

Number of Execution Cycles

The number of cycles required to execute instructions (number of execution cycles) is the
summation of the number of cycles of each instruction, the compensation value determined by
conditions, and the number of cycles required to fetch programs. If, however, a program stored
in memory that is connected to a 16-bit bus such as internal ROMs is to be fetched, program
fetch is executed every time instructions being executed exceed the two byte (one word)
boundary. Therefore, interference with data access will increase the number of execution
cycles. Since program fetch is executed for each byte of instructions being executed when a
program stored on the memory connected to an external 8-bit bus is fetched, data access
interference will increase the number of execution cycles.

When access is made to general-purpose registers, built-in ROMs, built-in RAMs, built-in I/O
units, or external buses during CPU intermittent operation, the CPU clock suspends its operation
for the number of cycles that is specified by the CG0/1 bit of the low-power-consumption-mode
control register. Therefore, to obtain the number of cycles required to execute instructions
during CPU intermittent operation, add these compensation values (the number of accesses
multiplied by the number of cycled suspended) to the number of normal execution cycles.

303

Appendix A Explanation of Instruction Lists

A.2 Symbols Used in Instructions Lists

Table A.2 explains the symbols used in the instruction lists.

Explanation of the Symbols Used in the Instruction Lists

Table A.2 Explanation of the Symbols Used in the Instruction Lists

Symbol Description

A 32 bit accumulator
The bit length used is different for each instruction.

Byte: Lower 8 bits of AL
Word: 16 bits of AL
Long: 32 bits of AL and AH

AH
AL

Upper 16 bits of A
Lower 16 bits of A

SP Stack pointer (USP or SSP)

PC Program counter

PCB Program bank register

DTB Data bank register

ADB Additional data bank register

SSB System stack bank register

USB User stack bank register

DPR Direct page register

brg1 DTB,ADB,SSB,USB,DPR,PCB

brg2 DTB,ADB,SSB,USB,DPR

Ri R0,R1,R2,R3,R4,R5,R6,R7

Rj R0,R1,R2,R3

RWi RW0,RW1,RW2,RW3,RW4,RW5,RW6,RW7

RWj RW0,RW1,RW2,RW3

RLi RL0,RL1,RL2,RL3

dir Compact direct addressing

addr16
addr24
ad24 0-15
ad24 16-23

Direct address designation
Physical direct addressing
Bits 0 to 15 of address 24
Bits 16 to 23 of address 24

io I/O area (000000H to 0000FFH)

304

Appendix A Explanation of Instruction Lists

imm4
imm8
imm16
imm32
ext(imm8)

4-bit immediate data
8-bit immediate data
16-bit immediate data
32-bit immediate data
16-bit data signed and extended from 8-bit immediate data

disp8
disp16

8-bit displacement
16-bit displacement

bp Bit offset value

vct4
vct8

Vector number (0 to 15)
Vector number (0 to 255)

()b Bit address

rel Branch specification relative to PC

ear
eam

Effective addressing (codes 00 to 07)
Effective addressing (codes 08 to 1F)

rlst Register list

Table A.2 Explanation of the Symbols Used in the Instruction Lists (Continued)

Symbol Description

305

Appendix A Explanation of Instruction Lists

A.3 Effective Address Field

Table A.3 lists address formats used in the effective address field.

Effective Address Field

*: The number of bytes of the address expansion part is shown in the “#” (number of bytes)
column or the figure before “+” in the expression of bytes in the instruction details.

Table A.3 Effective Address Field

Code Notation Address format
Number of bytes

of address
expansion part*

00
01
02
03
04
05
06
07

R0
R1
R2
R3
R4
R5
R6
R7

RW0
RW1
RW2
RW3
RW4
RW5
RW6
RW7

RL0
(RL0)
RL1
(RL1)
RL2
(RL2)
RL3
(RL3)

Register direct
Starting from the left, “ea” corresponds to
the byte, word and long-word types.

–

08
09
0A
0B

@RW0
@RW1
@RW2
@RW3

Register indirect 0

0C
0D
0E
0F

@RW0 +
@RW1 +
@RW2 +
@RW3 +

Register indirect with post-incrementing 0

10
11
12
13
14
15
16
17

@RW0 + disp8
@RW1 + disp8
@RW2 + disp8
@RW3 + disp8
@RW4 + disp8
@RW5 + disp8
@RW6 + disp8
@RW7 + disp8

Register indirect with 8-bit displacement 1

18
19
1A
1B

@RW0 + disp16
@RW1 + disp16
@RW2 + disp16
@RW3 + disp16

Register indirect with 16-bit displacement 2

1C
1D
1E
1F

@RW0 + RW7
@RW1 + RW7
@PC + disp16
addr16

Register indirect with index
Register indirect with index
PC indirect with 16-bit displacement
Direct address

0
0
2
2

306

Appendix A Explanation of Instruction Lists

A.4 Calculating the Number of Execution Cycles

Tables A.4a, A.4b, and A.4c show the method of calculating the number of execution
cycles of instructions.

Calculating the Number of Execution Cycles

Table A.4a Number of Execution Cycles for Designating Each Effective Address

* : (a) is used in “~” (number of cycles), “B” (compensation value) (both in Appendix B, “F2MC-
16LX Instruction List”), and in Chapter 9, “Instruction Details.”

Code Operand

(a)*
Number of accesses for
each form of addressing

Number of execution
cycles for each form of

addressing

00
to
07

Ri
RWi
RLi

Listed in Table of
Instructions

Listed in Table of
Instructions

08
to
0B

@RWj 2 1

0C
to
0F

@RWj+ 4 2

10
to
17

@RWi + disp8 2 1

18
to
1B

@RWj + disp16 2 1

1C
1D
1E
1F

@RW0 + RW7
@RW1 + RW7
@PC + disp16
addr16

4
4
2
1

2
2
0
0

307

Appendix A Explanation of Instruction Lists

Table A.4b Compensation Values for Calculating the Number of Execution Cycles

*: (b), (c), and (d) are used in “~” (number of cycles), “B” (compensation value) (both in Appendix B, “F2MC-
16LX Instruction List”), and in Chapter 9, “Instruction Details.”

Note: If external data buses are used, add the number of cycles that are weighted with ready input and
automatic ready.

Table A.4c Compensation Values for Calculating The Number of Program Fetch Cycles

Notes: • If external data buses are used, add the number of cycles that are weighted with ready
input and automatic ready.

• Since all cases of program fetch do not delay the execution of instructions, use this
compensation value to calculate the worst case value.

Operand
(b) byte* (c) word* (d) long*

Cycles
Access
cycles

Cycles
Access
cycles

Cycles
Access
cycles

Internal register +0 1 +0 1 +0 2

Internal register even address
Internal register odd address

+0
+0

1
1

+0
+2

1
2

+0
+4

2
4

Even address on external data bus (16 bits)
Odd address on external data bus (16 bits)

+1
+1

1
1

+1
+4

1
2

+2
+8

2
4

External data bus (8 bits) +1 1 +4 2 +8 4

Instruction Byte boundary Word boundary

Internal memory – +2

External data bus (16 bits) – +3

External data bus (8 bits) +3 –

308

Appendix B F2MC-16LX Instruction Lists (340 Instructions)

This appendix lists the instructions used in assembler.

For items and symbols for each instruction list, see Appendix A, “Explanation of
Instruction Lists.”

B.1 Transfer Instructions

B.2 Numeric Data Operation Instructions

B.3 Logical Data Operation Instructions

B.4 Shift Instructions

B.5 Branch Instructions

B.6 Other Instructions

309

Appendix B F2MC-16LX Instruction Lists (340 Instructions)

B.1 Transfer Instructions

Tables B.1a and B.1b lists the transfer instructions of the F2MC-16LX.
• Transfer instruction (Byte): 41 instructions in Table B.1a
• Transfer instruction (Word/Long-word): 38 instructions in Table B.1b

Transfer Instructions

Table B.1a Transfer Instruction (Byte): 41 Instructions

Note: For (a) to (d) in the table, see Table A.3, “Effective Address Field,” and Table A.4a, “Number of
Execution Cycles for Designating Each Effective Address.”

Mnemonic # ~ RG B Operation LH AH I S T N Z V C RMW

MOV A,dir
MOV A,addr16
MOV A,Ri
MOV A,ear
MOV A,eam
MOV A,io
MOV A,#imm8
MOV A,@A
MOV A,@RLi + disp8
MOVN A,#imm4

MOVX A,dir
MOVX A,addr16
MOVX A,Ri
MOVX A,ear
MOVX A,eam
MOVX A,io
MOVX A,#imm8
MOVX A,@A
MOVX A,@RWi + disp8
MOVX A,@RLi + disp8

MOV dir,A
MOV addr16,A
MOV Ri,A
MOV ear,A
MOV eam,A
MOV io,A
MOV @RLi + disp8,A
MOV Ri,ear
MOV Ri,eam
MOV ear,Ri
MOV eam,Ri
MOV Ri,#imm8
MOV io,#imm8
MOV dir,#imm8
MOV ear,#imm8
MOV eam,#imm8
MOV @AL,AH / MOV @A,T

XCH A,ear
XCH A,eam
XCH Ri,ear
XCH Ri,eam

2
3
1
2

2 +
2
2
2
3
1

2
3
2
2

2 +
2
2
2
2
3

2
3
1
2

2 +
2
3
2

2 +
2

2 +
2
3
3
3

3 +
2

2
2 +
2

2 +

3
4
2
2

3 + (a)
3
2
3
10
1

3
4
2
2

3 + (a)
3
2
3
5
10

3
4
2
2

3 + (a)
3
10
3

4 + (a)
4

5 + (a)
2
5
5
2

4 + (a)
3

4
5 + (a)

7
9 + (a)

0
0
1
1
0
0
0
0
2
0

0
0
1
1
0
0
0
0
1
2

0
0
1
1
0
0
2
2
1
2
1
1
0
0
1
0
0

2
0
4
2

(b)
(b)
0
0

(b)
(b)
0

(b)
(b)
0

(b)
(b)
0
0

(b)
(b)
0

(b)
(b)
(b)

(b)
(b)
0
0

(b)
(b)
(b)
0

(b)
0

(b)
0

(b)
(b)
0

(b)
(b)

0
2 × (b)

0
2 × (b)

byte (A) ← (dir)
byte (A) ← (addr16)
byte (A) ← (Ri)
byte (A) ← (ear)
byte (A) ← (eam)
byte (A) ← (io)
byte (A) ← (imm8)
byte (A) ← ((A))
byte (A) ← ((RLi) + disp8)
byte (A) ← imm4

byte (A) ← (dir)
byte (A) ← (addr16)
byte (A) ← (Ri)
byte (A) ← (ear)
byte (A) ← (eam)
byte (A) ← (io)
byte (A) ← imm8
byte (A) ← ((A))
byte (A) ← ((RWi) + disp8)
byte (A) ← ((RLi) + disp8)

byte (dir) ← (A)
byte (addr16) ← (A)
byte (Ri) ← (A)
byte (ear) ← (A)
byte (eam) ← (A)
byte (io) ← (A)
byte ((RLi) + disp8) ← (A)
byte (Ri) ← (ear)
byte (Ri) ← (eam)
byte (ear) ← (Ri)
byte (eam) ← (Ri)
byte (Ri) ← imm8
byte (io) ← imm8
byte (dir) ← imm8
byte (ear) ← imm8
byte (eam) ← imm8
byte ((A)) ← (AH)

byte (A) ←→ (ear)
byte (A) ←→ (eam)
byte (Ri) ←→ (ear)
byte (Ri) ←→ (eam)

Z
Z
Z
Z
Z
Z
Z
Z
Z
Z

X
X
X
X
X
X
X
X
X
X

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Z
Z
-
-

∗
∗
∗
∗
∗
∗
∗
-
∗
∗

∗
∗
∗
∗
∗
∗
∗
-
∗
∗

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-

∗
∗
∗
∗
∗
∗
∗
∗
∗
R

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
-
-
∗
-
∗

-
-
-
-

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
-
-
∗
-
∗

-
-
-
-

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-

Appendix B F2MC-16LX Instruction Lists (340 Instructions)

310

Table B.1b Transfer Instruction (Word/Long-word): 38 Instructions

Note: For (a) to (d) in the table, see Table A.3, “Effective Address Field,” and Table A.4a, “Number of
Execution Cycles for Designating Each Effective Address.”

Mnemonic # ~ RG B Operation LH AH I S T N Z V C RMW

MOVW A,dir
MOVW A,addr16
MOVW A,SP
MOVW A,RWi
MOVW A,ear
MOVW A,eam
MOVW A,io
MOVW A,@A
MOVW A,#imm16
MOVW A,@RWi + disp8
MOVW A,@RLi + disp8

MOVW dir,A
MOVW addr16,A
MOVW SP,A
MOVW RWi,A
MOVW ear,A
MOVW eam,A
MOVW io,A
MOVW @RWi + disp8,A
MOVW @RLi + disp8,A
MOVW RWi,ear
MOVW RWi,eam
MOVW ear,RWi
MOVW eam,RWi
MOVW RWi,#imm16
MOVW io,#imm16
MOVW ear,#imm16
MOVW eam,#imm16
MOVW @AL,AH / MOVW @A,T

XCHW A,ear
XCHW A,eam
XCHW RWi,ear
XCHW RWi,eam

2
3
1
1
2

2 +
2
2
3
2
3

2
3
1
1
2

2 +
2
2
3
2

2 +
2

2 +
3
4
4

4 +
2

2
2 +
2

2 +

3
4
1
2
2

3 + (a)
3
3
2
5

10

3
4
1
2
2

3 + (a)
3
5

10
3

4 + (a)
4

5 + (a)
2
5
2

4 + (a)
3

4
5 + (a)

7
9 + (a)

0
0
0
1
1
0
0
0
0
1
2

0
0
0
1
1
0
0
1
2
2
1
2
1
1
0
1
0
0

2
0
4
2

(c)
(c)
0
0
0

(c)
(c)
(c)
0

(c)
(c)

(c)
(c)
0
0
0

(c)
(c)
(c)
(c)
0

(c)
0

(c)
0

(c)
0

(c)
(c)

0
2 × (c)

0
2 × (c)

word (A) ← (dir)
word (A) ← (addr16)
word (A) ← (SP)
word (A) ← (RWi)
word (A) ← (ear)
word (A) ← (eam)
word (A) ← (io)
word (A) ← ((A))
word (A) ← imm16
word (A) ← ((RWi) + disp8)
word (A) ← ((RLi) + disp8)

word (dir) ← (A)
word (addr16) ← (A)
word (SP) ← (A)
word (RWi) ← (A)
word (ear) ← (A)
word (eam) ← (A)
word (io) ← (A)
word ((RWi) + disp8) ← (A)
word ((RLi) + disp8) ← (A)
word (RWi) ← (ear)
word (RWi) ← (eam)
word (ear) ← (RWi)
word (eam) ← (RWi)
word (RWi) ← imm16
word (io) ← imm16
word (ear) ← imm16
word (eam) ← imm16
word ((A)) ← (AH)

word (A) ←→ (ear)
word (A) ←→ (eam)
word (RWi) ←→ (ear)
word (RWi) ←→ (eam)

-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-

∗
∗
∗
∗
∗
∗
∗
-
∗
∗
∗

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-

-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-

-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-

-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
-
∗
-
∗

-
-
-
-

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
-
∗
-
∗

-
-
-
-

-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-

-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-

-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-

MOVL A,ear
MOVL A,eam
MOVL A,#imm32

MOVL ear,A
MOVL eam,A

2
2 +
5

2
2 +

4
5 + (a)

3

4
5 + (a)

2
0
0

2
0

0
(d)
0

0
(d)

long (A) ← (ear)
long (A) ← (eam)
long (A) ← imm32

long (ear1) ← (A)
long (eam1) ← (A)

-
-
-

-
-

-
-
-

-
-

-
-
-

-
-

-
-
-

-
-

-
-
-

-
-

∗
∗
∗

∗
∗

∗
∗
∗

∗
∗

-
-
-

-
-

-
-
-

-
-

-
-
-

-
-

311

Appendix B F2MC-16LX Instruction Lists (340 Instructions)

B.2 Numeric Data Operation Instructions

The numeric data operation instructions of the F2MC-16L are listed in the following five
tables:

• Table B.2a for addition and subtraction (Byte/Word/Long-word)
: 42 instructions

• Table B.2b for increment and decrement (Byte/Word/Long-word)
: 12 instructions

• Table B.2c for compare (Byte/Word/Long-word): 11 instructions
• Table B.2d for unsigned multiplication and division

: 11 instructions (Word/Long-word)
• Table B.2e for signed multiplication and division

: 11 instructions (Word/Long-word)

Numeric Data Operation Instructions

Table B.2a Addition and Subtraction (Byte/Word/Long-word): 42 Instructions

Mnemonic # ~ RG B Operation LH AH I S T N Z V C RMW

ADD A,#imm8
ADD A,dir
ADD A,ear
ADD A,eam
ADD ear,A
ADD eam,A
ADDC A
ADDC A,ear
ADDC A,eam
ADDDC A

SUB A,#imm8
SUB A,dir
SUB A,ear
SUB A,eam
SUB ear,A
SUB eam,A
SUBC A
SUBC A,ear
SUBC A,eam
SUBDC A

2
2
2

2 +
2

2 +
1
2

2 +
1

2
2
2

2 +
2

2 +
1
2

2 +
1

2
5
3

4 + (a)
3

5 + (a)
2
3

4 + (a)
3

2
5
3

4 + (a)
3

5 + (a)
2
3

4 + (a)
3

0
0
1
0
2
0
0
1
0
0

0
0
1
0
2
0
0
1
0
0

0
(b)
0

(b)
0

2 × (b)
0
0

(b)
0

0
(b)
0

(b)
0

2 × (b)
0
0

(b)
0

byte (A) ← (A) + imm8
byte (A) ← (A) + (dir)
byte (A) ← (A) + (ear)
byte (A) ← (A) + (eam)
byte (ear) ← (ear) + (A)
byte (eam) ← (eam) + (A)
byte (A) ← (AH) + (AL) + (C)
byte (A) ← (A) + (ear) + (C)
byte (A) ← (A) + (eam) + (C)
byte (A) ← (AH) + (AL) + (C)
(hexadecimal)
byte (A) ← (A) - imm8
byte (A) ← (A) - (dir)
byte (A) ← (A) - (ear)
byte (A) ← (A) - (eam)
byte (ear) ← (ear) - (A)
byte (eam) ← (eam) - (A)
byte (A) ← (AH) - (AL) - (C)
byte (A) ← (A) - (ear) - (C)
byte (A) ← (A) - (eam) - (C)
byte (A) ← (AH) - (AL) - (C)
(hexadecimal)

Z
Z
Z
Z
-
Z
Z
Z
Z
Z

Z
Z
Z
Z
-
-
Z
Z
Z
Z

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

-
-
-
-
-
∗
-
-
-
-

-
-
-
-
-
∗
-
-
-
-

ADDW A
ADDW A,ear
ADDW A,eam
ADDW A,#imm16
ADDW ear,A
ADDW eam,A
ADDCW A,ear
ADDCW A,eam
SUBW A
SUBW A,ear
SUBW A,eam
SUBW A,#imm16
SUBW ear,A
SUBW eam,A
SUBCW A,ear
SUBCW A,eam

1
2

2 +
3
2

2 +
2

2 +
1
2

2 +
3
2

2 +
2

2 +

2
3

4 + (a)
2
3

5 + (a)
3

4 + (a)
2
3

4 + (a)
2
3

5 + (a)
3

4 + (a)

0
1
0
0
2
0
1
0
0
1
0
0
2
0
1
0

0
0

(c)
0
0

2 × (c)
0

(c)
0
0

(c)
0
0

2 × (c)
0

(c)

word (A) ← (AH) + (AL)
word (A) ← (A) + (ear)
word (A) ← (A) + (eam)
word (A) ← (A) + imm16
word (ear) ← (ear) + (A)
word (eam) ← (eam) + (A)
word (A) ← (A) + (ear) + (C)
word (A) ← (A) + (eam) + (C)
word (A) ← (AH) - (AL)
word (A) ← (A) - (ear)
word (A) ← (A) - (eam)
word (A) ← (A) - imm16
word (ear) ← (ear) - (A)
word (eam) ← (eam) - (A)
word (A) ← (A) - (ear) - (C)
word (A) ← (A) - (eam) - (C)

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

-
-
-
-
-
∗
-
-
-
-
-
-
-
∗
-
-

Appendix B F2MC-16LX Instruction Lists (340 Instructions)

312

Table B.2a Addition and Subtraction (Byte/Word/Long-word): 42 Instructions (Continued)

Note: For (a) to (d) in the table, see Table A.3, “Effective Address Field,” and Table A.4a, “Number of
Execution Cycles for Designating Each Effective Address.”

Table B.2b Increment and Decrement (Byte/Word/Long-word): 12 Instructions

Note: For (a) to (d) in the table, see Table A.3, “Effective Address Field,” and Table A.4a, “Number of
Execution Cycles for Designating Each Effective Address.”

Table B.2c Compare (Byte/Word/Long-word): 11 Instructions

Note: For (a) to (d) in the table, see Table A.3, “Effective Address Field,” and Table A.4a, “Number of
Execution Cycles for Designating Each Effective Address.”

Mnemonic # ~ RG B Operations LH AH I S T N Z V C RMW

ADDL A,ear
ADDL A,eam
ADDL A,#imm32
SUBL A,ear
SUBL A,eam
SUBL A,#imm32

2
2 +
5
2

2 +
5

6
7 + (a)

4
6

7 + (a)
4

2
0
0
2
0
0

0
(d)
0
0

(d)
0

long (A) ← (A) + (ear)
long (A) ← (A) + (eam)
long (A) ← (A) + imm32
long (A) ← (A) - (ear)
long (A) ← (A) - (eam)
long (A) ← (A) - imm32

-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-

∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗

-
-
-
-
-
-

Mnemonic # ~ RG B Operation LH AH I S T N Z V C RMW

INC ear
INC eam

DEC ear
DEC eam

2
2 +

2
2 +

3
5 + (a)

3
5 + (a)

2
0

2
0

0
2 × (b)

0
2 × (b)

byte (ear) ← (ear) + 1
byte (eam) ← (eam) + 1

byte (ear) ← (ear) - 1
byte (eam) ← (eam) - 1

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

-
-

-
-

-
∗

-
∗

INCW ear
INCW eam

DECW ear
DECW eam

2
2 +

2
2 +

3
5 + (a)

3
5 + (a)

2
0

2
0

0
2 × (c)

0
2 × (c)

word (ear) ← (ear) + 1
word (eam) ← (eam) + 1

word (ear) ← (ear) - 1
word (eam) ← (eam) - 1

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

-
-

-
-

-
∗

-
∗

INCL ear
INCL eam

DECL ear
DECL eam

2
2 +

2
2 +

7
9 + (a)

7
9 + (a)

4
0

4
0

0
2 × (d)

0
2 × (d)

long (ear) ← (ear) + 1
long (eam) ← (eam) + 1

long (ear) ← (ear) - 1
long (eam) ← (eam) - 1

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

-
-

-
-

-
∗

-
∗

Mnemonic # ~ RG B Operation LH AH I S T N Z V C RMW

CMP A
CMP A,ear
CMP A,eam
CMP A,#imm8

1
2

2 +
2

1
2

3 + (a)
2

0
1
0
0

0
0

(b)
0

byte (AH) - (AL)
byte (A) - (ear)
byte (A) - (eam)
byte (A) - imm8

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

∗
∗
∗
∗

∗
∗
∗
∗

∗
∗
∗
∗

∗
∗
∗
∗

-
-
-
-

CMPW A
CMPW A,ear
CMPW A,eam
CMPW A,#imm16

1
2

2 +
3

1
2

3 + (a)
2

0
1
0
0

0
0

(c)
0

word (AH) - (AL)
word (A) - (ear)
word (A) - (eam)
word (A) - imm16

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

∗
∗
∗
∗

∗
∗
∗
∗

∗
∗
∗
∗

∗
∗
∗
∗

-
-
-
-

CMPL A,ear
CMPL A,eam
CMPL A,#imm32

2
2 +
5

6
7 + (a)

3

2
0
0

0
(d)
0

long (A) - (ear)
long (A) - (eam)
long (A) - imm32

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

∗
∗
∗

∗
∗
∗

∗
∗
∗

∗
∗
∗

-
-
-

313

Appendix B F2MC-16LX Instruction Lists (340 Instructions)

Table B.2d Unsigned Multiplication and Division: 11 Instructions (Word/Long-word)

*1: 3 for zero-divide, 7 for overflow, 15 for normal
*2: 4 for zero-divide, 8 for overflow, 16 for normal
*3: 6 + (a) for zero-divide, 9 + (a) for overflow, 19 + (a) for normal
*4: 4 for zero-divide, 7 for overflow, 22 for normal
*5: 6 + (a) for zero-divide, 8 + (a) for overflow, 26 + (a) for normal
*6: (b) for zero-divide or overflow, 2 x (b) for normal
*7: (c) for zero-divide or overflow, 2 x (c) for normal
*8: 3 when byte (AH) is 0, 7 when byte (AH) is not 0
*9: 4 when byte (ear) is 0, 8 when byte (ear) is not 0
*10: 5 + (a) when byte (eam) is 0, 9 + (a) when byte (eam) is not 0
*11: 3 when word (AH) is 0, 11 when word (AH) is not 0
*12: 4 when word (ear) is 0, 12 when word (ear) is not 0
*13: 5 + (a) when word (eam) is 0, 13 + (a) when word (eam) is not 0

Note: For (a) to (d) in the table, see Table A.3, “Effective Address Field,” and Table A.4a, “Number of
Execution Cycles for Designating Each Effective Address.”

Mnemonic # ~ RG B Operation LH AH I S T N Z V C RMW

DIVU A

DIVU A,ear

DIVU A,eam

DIVUW A,ear

DIVUW A,eam

MULU A
MULU A,ear
MULU A,eam
MULUW A
MULUW A,ear
MULUW A,eam

1

2

2 +

2

2 +

1
2

2 +
1
2

2 +

*1

*2

*3

*4

*5

*8
*9
*10
*11
*12
*13

0

1

0

1

0

0
1
0
0
1
0

0

0

*6

0

*7

0
0

(b)
0
0

(c)

word (AH) / byte (AL)
Quotient → byte (AL)
Remainder → byte (AH)

word (A) / byte (ear)
Quotient → byte (A)
Remainder → byte (ear)

word (A) / byte (eam)
Quotient → byte (A)
Remainder → byte (ear)

long (A) / word (ear)
Quotient → word (A)
Remainder → word (ear)

long (A) / word (eam)
Quotient → word (A)
Remainder → word (eam)

byte (AH) * byte (AL) → word (A)
byte (A) * byte (ear) → word (A)
byte (A) * byte (eam) → word (A)
word (AH) * word (AL) → Long (A)
word (A) * word (ear) → Long (A)
word (A) * word (eam) → Long (A)

-

-

-

-

-

-
-
-
-
-
-

-

-

-

-

-

-
-
-
-
-
-

-

-

-

-

-

-
-
-
-
-
-

-

-

-

-

-

-
-
-
-
-
-

-

-

-

-

-

-
-
-
-
-
-

-

-

-

-

-

-
-
-
-
-
-

-

-

-

-

-

-
-
-
-
-
-

∗

∗

∗

∗

∗

-
-
-
-
-
-

∗

∗

∗

∗

∗

-
-
-
-
-
-

-

-

-

-

-

-
-
-
-
-
-

Appendix B F2MC-16LX Instruction Lists (340 Instructions)

314

Table B.2e Signed Multiplication and Division: 11 Instructions (Word/Long-word)

*1: 3 for zero-divide, 8 or 18 for overflow, 18 for normal
*2: 4 for zero-divide, 11 or 22 for overflow, 23 for normal
*3: 5 + (a) for zero-divide, 12 + (a) or 23 + (a) for overflow, 24 + (a) for normal
*4: If the dividend is positive: 4 for zero-divide, 12 or 30 for overflow, 31 for normal

If the dividend is negative: 4 for zero-divide, 12 or 31 for overflow, 32 for normal
*5: If the dividend is positive: 5 + (a) for zero-divide, 12 + (a) or 31 + (a) for overflow,

32 + (a) for normal
If the dividend is negative: 5 + (a) for zero-divide, 12 + (a) or 32 + (a) for overflow,
33 + (a) for normal

*6: (b) for zero-divide or overflow, 2 x (b) for normal
*7: (c) for zero-divide or overflow, 2 x (c) for normal
*8: 3 when byte (AH) is 0, 12 when the result is positive, 13 when the result is negative
*9: 4 when byte (ear) is 0, 13 when the result is positive, 14 when the result is negative
*10: 5 + (a) when byte (eam) is 0, 14 + (a) when the result is positive, 15 + (a) when the

result is negative
*11: 3 when word (AH) is 0, 16 when the result is positive, 19 when the result is negative
*12: 4 when word (ear) is 0, 17 when the result is positive, 20 when the result is negative
*13: 5 + (a) when word (eam) is 0, 18 + (a) when the result is positive, 21 + (a) when

the result is negative

Notes: • There are two numbers of execution cycles when overflow occurs during execution of the DIV and
DIVW instructions, depending on the number of execution cycles is detected before or after
operation.

• The content of AL is corrupted when overflow occurs during execution of the DIV and DIVW
instructions.

• For (a) to (d) in the table, see Table A.3, “Effective Address Field,” and Table A.4a, “Number of
Execution Cycles for Designating Each Effective Address.”

Mnemonic # ~ RG B Operation LH AH I S T N Z V C RMW

DIV A

DIV A,ear

DIV A,eam

DIVW A,ear

DIVW A,eam

MUL A
MUL A,ear
MUL A,eam
MULW A
MULW A,ear
MULW A,eam

1

2

2 +

2

2 +

2
2

2 +
2
2

2 +

*1

*2

*3

*4

*5

*8
*9

*10
*11
*12
*13

0

1

0

1

0

0
1
0
0
1
0

0

0

*6

0

*7

0
0

(b)
0
0

(c)

word (AH) / byte (AL)
Quotient → byte (AL)
Remainder → byte (AH)

word (A) / byte (ear)
Quotient → byte (A)
Remainder → byte (ear)

word (A) / byte (eam)
Quotient → byte (A)
Remainder → byte (ear)

long (A) / word (ear)
Quotient → word (A)
Remainder → word (ear)

long (A) / word (eam)
Quotient → word (A)
Remainder → word (eam)

byte (AH) * byte (AL) → word (A)
byte (A) * byte (ear) → word (A)
byte (A) * byte (eam) → word (A)
word (AH) * word (AL) → Long (A)
word (A) * word (ear) → Long (A)
word (A) * word (eam) → Long (A)

Z

Z

Z

-

-

-
-
-
-
-
-

-

-

-

-

-

-
-
-
-
-
-

-

-

-

-

-

-
-
-
-
-
-

-

-

-

-

-

-
-
-
-
-
-

-

-

-

-

-

-
-
-
-
-
-

-

-

-

-

-

-
-
-
-
-
-

-

-

-

-

-

-
-
-
-
-
-

∗

∗

∗

∗

∗

-
-
-
-
-
-

∗

∗

∗

∗

∗

-
-
-
-
-
-

-

-

-

-

-

-
-
-
-
-
-

315

Appendix B F2MC-16LX Instruction Lists (340 Instructions)

B.3 Logical Data Operation Instruction

The logical data operation instructions of the F2MC-16L are listed in the following four
tables:

• Table B.3a for logic 1 (Byte/Word): 39 instructions
• Table B.3b for logic 2 (Long): 6 instructions
• Table B.3c for sign inversion (Byte/Word): 6 instructions
• Table B.3d for normalize instructions (Long): 1 instruction

Logical Operation Instruction

Table B.3a Logic 1 (Byte/Word): 39 Instructions

Note: For (a) to (d) in the table, see Table A.3, “Effective Address Field,” and Table A.4a, “Number of
Execution Cycles for Designating Each Effective Address.”

Mnemonic # ~ RG B Operation LH AH I S T N Z V C RMW

AND A,#imm8
AND A,ear
AND A,eam
AND ear,A
AND eam,A

OR A,#imm8
OR A,ear
OR A,eam
OR ear,A
OR eam,A

XOR A,#imm8
XOR A,ear
XOR A,eam
XOR ear,A
XOR eam,A
NOT A
NOT ear
NOT eam

2
2

2 +
2

2 +

2
2

2 +
2

2 +

2
2

2 +
2

2 +
1
2

2 +

2
3

4 + (a)
3

5 + (a)

2
3

4 + (a)
3

5 + (a)

2
3

4 + (a)
3

5 + (a)
2
3

5 + (a)

0
1
0
2
0

0
1
0
2
0

0
1
0
2
0
0
2
0

0
0

(b)
0

2 × (b)

0
0

(b)
0

2 × (b)

0
0

(b)
0

2 × (b)
0
0

2 × (b)

byte (A) ← (A) and imm8
byte (A) ← (A) and (ear)
byte (A) ← (A) and (eam)
byte (ear) ← (ear) and (A)
byte (eam) ← (eam) and (A)

byte (A) ← (A) or imm8
byte (A) ← (A) or (ear)
byte (A) ← (A) or (eam)
byte (ear) ← (ear) or (A)
byte (eam) ← (eam) or (A)

byte (A) ← (A) xor imm8
byte (A) ← (A) xor (ear)
byte (A) ← (A) xor (eam)
byte (ear) ← (ear) xor (A)
byte (eam) ← (eam) xor (A)
byte (A) ← not (A)
byte (ear) ← not (ear)
byte (eam) ← not (eam)

-
-
-
-
-

-
-
-
-
-

-
-
-
-
-
-
-
-

-
-
-
-
-

-
-
-
-
-

-
-
-
-
-
-
-
-

-
-
-
-
-

-
-
-
-
-

-
-
-
-
-
-
-
-

-
-
-
-
-

-
-
-
-
-

-
-
-
-
-
-
-
-

-
-
-
-
-

-
-
-
-
-

-
-
-
-
-
-
-
-

∗
∗
∗
∗
∗

∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗

∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗

R
R
R
R
R

R
R
R
R
R

R
R
R
R
R
R
R
R

-
-
-
-
-

-
-
-
-
-

-
-
-
-
-
-
-
-

-
-
-
-
∗

-
-
-
-
∗

-
-
-
-
∗
-
-
∗

ANDW A
ANDW A,#imm16
ANDW A,ear
ANDW A,eam
ANDW ear,A
ANDW eam,A

ORW A
ORW A,#imm16
ORW A,ear
ORW A,eam
ORW ear,A
ORW eam,A

XORW A
XORW A,#imm16
XORW A,ear
XORW A,eam
XORW ear,A
XORW eam,A
NOTW A
NOTW ear
NOTW eam

1
3
2

2 +
2

2 +

1
3
2

2 +
2

2 +

1
3
2

2 +
2

2 +
1
2

2 +

2
2
3

4 + (a)
3

5 + (a)

2
2
3

4 + (a)
3

5 + (a)

2
2
3

4 + (a)
3

5 + (a)
2
3

5 + (a)

0
0
1
0
2
0

0
0
1
0
2
0

0
0
1
0
2
0
0
2
0

0
0
0

(c)
0

2 × (c)

0
0
0

(c)
0

2 × (c)

0
0
0

(c)
0

2 × (c)
0
0

2 × (c)

word (A) ← (AH) and (A)
word (A) ← (A) and imm16
word (A) ← (A) and (ear)
word (A) ← (A) and (eam)
word (ear) ← (ear) and (A)
word (eam) ← (eam) and (A)

word (A) ← (AH) or (A)
word (A) ← (A) or imm16
word (A) ← (A) or (ear)
word (A) ← (A) or (eam)
word (ear) ← (ear) or (A)
word (eam) ← (eam) or (A)

word (A) ← (AH) xor (A)
word (A) ← (A) xor imm16
word (A) ← (A) xor (ear)
word (A) ← (A) xor (eam)
word (ear) ← (ear) xor (A)
word (eam) ← (eam) xor (A)
word (A) ← not (A)
word (ear) ← not (ear)
word (eam) ← not (eam)

-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-
-
-
-

∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗

R
R
R
R
R
R

R
R
R
R
R
R

R
R
R
R
R
R
R
R
R

-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-
-
-
-

-
-
-
-
-
∗

-
-
-
-
-
∗

-
-
-
-
-
∗
-
-
∗

Appendix B F2MC-16LX Instruction Lists (340 Instructions)

316

Table B.3b Logic 2 (Long): 6 Instructions

Note: For (a) to (d) in the table, see Table A.3, “Effective Address Field,” and Table A.4a, “Number of
Execution Cycles for Designating Each Effective Address.”

Table B.3c Sign Inversion (Byte/Word): 6 Instructions

Note: For (a) to (d) in the table, see Table A.3, “Effective Address Field,” and Table A.4a, “Number of
Execution Cycles for Designating Each Effective Address.”

Table B.3d Normalize Instruction (Long): 1 Instruction

*1: 4 when accumulators are all zeros, 6 + (R0) for otherwise

Note: For (a) to (d) in the table, see Table A.3, “Effective Address Field,” and Table A.4a, “Number of
Execution Cycles for Designating Each Effective Address.”

Mnemonic # ~ RG B Operation LH AH I S T N Z V C RMW

ANDL A,ear
ANDL A,eam

ORL A,ear
ORL A,eam

XORL A,ear
XORL A,eam

2
2 +

2
2 +

2
2 +

6
7 + (a)

6
7 + (a)

6
7 + (a)

2
0

2
0

2
0

0
(d)

0
(d)

0
(d)

long (A) ← (A) and (ear)
long (A) ← (A) and (eam)

long (A) ← (A) or (ear)
long (A) ← (A) or (eam)

long (A) ← (A) xor (ear)
long (A) ← (A) xor (eam)

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

R
R

R
R

R
R

-
-

-
-

-
-

-
-

-
-

-
-

Mnemonic # ~ RG B Operation LH AH I S T N Z V C RMW

NEG A

NEG ear
NEG eam

1

2
2 +

2

3
5 + (a)

0

2
0

0

0
2 × (b)

byte (A) ← 0 - (A)

byte (ear) ← 0 - (ear)
byte (eam) ← 0 - (eam)

X

-
-

-

-
-

-

-
-

-

-
-

-

-
-

∗

∗
∗

∗

∗
∗

∗

∗
∗

∗

∗
∗

-

-
∗

NEGW A

NEGW ear
NEGW eam

1

2
2 +

2

2
5 + (a)

0

2
0

0

0
2 × (c)

word (A) ← 0 - (A)

word (ear) ← 0 - (ear)
word (eam) ← 0 - (eam)

-

-
-

-

-
-

-

-
-

-

-
-

-

-
-

∗

∗
∗

∗

∗
∗

∗

∗
∗

∗

∗
∗

-

-
∗

Mnemonic # ~ RG B Operation LH AH I S T N Z V C RMW

NRML A,R0 2 *1 1 0 long (A) ← Shift to the first
 bit which is set to 1
formerly placed

byte (R0) ← Number of shifts
at that time

- - - - - - ∗ - - -

317

Appendix B F2MC-16LX Instruction Lists (340 Instructions)

B.4 Shift Instruction

Table B.4 lists 18 shift instructions of F2MC-16L.

Shift Instruction

Table B.4a Shift Instructions (Byte/Word/Long-word): 18 Instructions

*1: 6 when R0 is 0, 5 + (R0) for otherwise
*2: 6 when R0 is 0, 6 + (R0) for otherwise

Note: For (a) to (d) in the table, see Table A.3, “Effective Address Field,” and Table A.4a, “Number of
Execution Cycles for Designating Each Effective Address.”

Mnemonic # ~ RG B Operation LH AH I S T N Z V C RMW

RORC A
ROLC A

RORC ear
RORC eam
ROLC ear
ROLC eam

ASR A,R0
LSR A,R0
LSL A,R0

2
2

2
2 +
2

2 +

2
2
2

2
2

3
5 + (a)

3
5 + (a)

*1
*1
*1

0
0

2
0
2
0

1
1
1

0
0

0
2 × (b)

0
2 × (b)

0
0
0

byte (A) ← Right rotate with carry
byte (A) ← Left rotate with carry

byte (ear) ← Right rotate with carry
byte (eam) ← Right rotate with carry
byte (ear) ← Left rotate with carry
byte (eam) ← Left rotate with carry

byte (A) ← Arithmetic right barrel shift (A,R0)
byte (A) ← Logical right barrel shift (A,R0)
byte (A) ← Logical left barrel shift (A,R0)

-
-

-
-
-
-

-
-
-

-
-

-
-
-
-

-
-
-

-
-

-
-
-
-

-
-
-

-
-

-
-
-
-

-
-
-

-
-

-
-
-
-

∗
∗
-

∗
∗

∗
∗
∗
∗

∗
∗
∗

∗
∗

∗
∗
∗
∗

∗
∗
∗

-
-

-
-
-
-

-
-
-

∗
∗

∗
∗
∗
∗

∗
∗
∗

-
-

-
∗
-
∗

-
-
-

ASRW A
LSRW A / SHRW A
LSLW A / SHLW A

ASRW A,R0

LSRW A,R0
LSLW A,R0

1
1
1

2

2
2

2
2
2

*1

*1
*1

0
0
0

1

1
1

0
0
0

0

0
0

word (A) ← Arithmetic right shift (A,1 bit)
word (A) ← Logical right shift (A,1 bit)
word (A) ← Logical left shift (A,1 bit)

word (A) ← Arithmetic right barrel shift
(A,R0)
word (A) ← Logical right barrel shift (A,R0)
word (A) ← Logical left barrel shift (A,R0)

-
-
-

-

-
-

-
-
-

-

-
-

-
-
-

-

-
-

-
-
-

-

-
-

∗
∗
-

∗

∗
-

∗
R
∗

∗

∗
∗

∗
∗
∗

∗

∗
∗

-
-
-

-

-
-

∗
∗
∗

∗

∗
∗

-
-
-

-

-
-

ASRL A,R0
LSRL A,R0
LSLL A,R0

2
2
2

*2
*2
*2

1
1
1

0
0
0

long (A) ← Arithmetic right barrel shift (A,R0)
long (A) ← Logical right barrel shift (A,R0)
long (A) ← Logical left barrel shift (A,R0)

-
-
-

-
-
-

-
-
-

-
-
-

∗
∗
-

∗
∗
∗

∗
∗
∗

-
-
-

∗
∗
∗

-
-
-

318

Appendix B F2MC-16LX Instruction Lists (340 Instructions)

B.5 Branch Instructions

The branch instructions of the F2MC-16L are listed in the following two tables:
• Table B.5a for branch 1: 31 instructions
• Table B.5b for branch 2: 19 instructions

Branch Instruction

Table B.5a Branch 1: 31 Instructions

*1: 4 when branch is made, 6 when branch is not made
*2: 3 x (c) + (b)
*3: Read the branched address (word)
*4: W: Save to stack (word), R: Read the branched address (word)
*5: Save to stack (word)
*6: W: Save to stack (long), R: Read the branched address (long)
*7 Save to stack (long)

Note: For (a) to (d) in the table, see Table A.3, “Effective Address Field,” and Table A.4a, “Number of
Execution Cycles for Designating Each Effective Address.”

Mnemonic # ~ RG B Operation LH AH I S T N Z V C RMW

BZ / BEQ rel
BNZ / BNE rel
BC / BLO rel
BNC / BHS rel
BN rel
BP rel
BV rel
BNV rel
BT rel
BNT rel
BLT rel
BGE rel
BLE rel
BGT rel
BLS rel
BHI rel
BRA rel

JMP @A
JMP addr16
JMP @ear
JMP @eam
JMPP @ear *3
JMPP @eam *3
JMPP addr24

CALL @ear *4
CALL @eam *4
CALL addr16 *5
CALLV #vct4 *5
CALLP @ear *6
CALLP @eam *6

CALLP addr24 *7

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

1
3
2

2 +
2

2 +
4

2
2 +
3
1
2

2 +

4

*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1

2
3
3

4 + (a)
5

6 + (a)
4

6
7 + (a)

6
7
10

11 + (a)

10

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
1
0
2
0
0

1
0
0
0
2
0

0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0

(c)
0

(d)
0

(c)
2 × (c)

(c)
2 × (c)
2 × (c)

*2

2 × (c)

Branch when (Z) = 1
Branch when (Z) = 0
Branch when (C) = 1
Branch when (C) = 0
Branch when (N) = 1
Branch when (N) = 0
Branch when (V) = 1
Branch when (V) = 0
Branch when (T) = 1
Branch when (T) = 0
Branch when (V) xor (N) = 1
Branch when (V) xor (N) = 0
Branch when ((V) xor (N)) or (Z) = 1
Branch when ((V) xor (N)) or (Z) = 0
Branch when (C) or (Z) = 1
Branch when (C) or (Z) = 0
Unconditional branching

word (PC) ← (A)
word (PC) ← addr16
word (PC) ← (ear)
word (PC) ← (eam)
word (PC) ← (ear), (PCB) ← (ear + 2)
word (PC) ← (eam), (PCB) ← (eam + 2)
word (PC) ← ad24 0-15, (PCB) ← ad24 16-23

word (PC) ← (ear)
word (PC) ← (eam)
word (PC) ← addr16
Vector call instruction
word (PC) ← (ear) 0-15, (PCB) ← (ear)16-23
word (PC) ← (eam) 0-15,
(PCB) ← (eam)16-23
word (PC) ← addr0-15, (PCB) ← addr16-23

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-

-
-
-
-
-
-

-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-

-
-
-
-
-
-

-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-

-
-
-
-
-
-

-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-

-
-
-
-
-
-

-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-

-
-
-
-
-
-

-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-

-
-
-
-
-
-

-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-

-
-
-
-
-
-

-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-

-
-
-
-
-
-

-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-

-
-
-
-
-
-

-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-

-
-
-
-
-
-

-

319

Appendix B F2MC-16LX Instruction Lists (340 Instructions)

Table B.5b Branch 2: 19 Instructions

*1: 5 when branch is made, 4 when branch is not made
*2: 13 when branch is made, 12 when branch is not made
*3: 7 + (a) when branch is made, 6 + (a) when branch is not made
*4: 8 when branch is made, 7 when branch is not made
*5: 7 when branch is made, 6 when branch is not made
*6: 8 + (a) when branch is made, 7 + (a) when branch is not made
*7: 3 x (b) + 2 x (c) when the sequence is branched to the next interrupt

request, 6 x (c) when returned from the current interruption
*8: 15 when the sequence is branched to the next interrupt request, 17 whe

returned from the current interruption
*9: Do not use the RWj + addressing mode for the CBNE/CWBNE instruction.
*10: Return from stack (word)
*11: Return from stack (long)

Note: For (a) to (d) in the table, see Table A.3, “Effective Address Field,” and Table A.4a, “Number of
Execution Cycles for Designating Each Effective Address.”

Mnemonic # ~ RG B Operation LH AH I S T N Z V C RMW

CBNE A,#imm8,rel
CWBNE A,#imm16,rel

CBNE ear,#imm8,rel
CBNE eam,#imm8,rel *9
CWBNE ear,#imm16,rel *9
CWBNE eam,#imm16,rel

DBNZ ear,rel
DBNZ eam,rel

DWBNZ ear,rel
DWBNZ eam,rel

INT #vct8
INT addr16
INTP addr24
INT9
RETI

LINK #imm8

UNLINK

RET *10
RETP *11

3
4

4
4 +
5

5 +

3
3 +

3
3 +

2
3
4
1
1

2

1

1
1

*1
*1

*2
*3
*4
*3

*5
*6

*5
*6

20
16
17
20
*8

6

5

4
6

0
0

1
0
1
0

2
2

2
2

0
0
0
0
0

0

0

0
0

0
0

0
(b)
0

(c)

0
2 × (b)

0
2 × (c)

8 × (c)
6 × (c)
6 × (c)
8 × (c)

*7

(c)

(c)

(c)
(d)

Branch when byte (A) ≠ imm8
Branch when word (A)≠ imm16

Branch when byte (ear)≠ imm8
Branch when byte (eam)≠ imm8
Branch when word (ear)≠ imm16
Branch when word (eam)≠ imm16

Branch when byte (ear)=(ear)-1, (ear)≠ 0
Branch when byte (eam)=(eam)-1, (eam)≠ 0

Branch when word (ear)=(ear)-1, (ear)≠ 0
Branch when word (eam)=(eam)-1, (eam)≠ 0

Software interrupt
Software interrupt
Software interrupt
Software interrupt
Recovery from interrupt

At the entrance of function, save old frame
pointers im stack, set up new frame pointers,
reserve area for local pointers.
At the exit of function, recover the old frame
pointers from the stack.

Recover from the subroutine.
Recover from the subroutine.

-
-

-
-
-
-

-
-

-
-

-
-
-
-
-

-

-

-
-

-
-

-
-
-
-

-
-

-
-

-
-
-
-
-

-

-

-
-

-
-

-
-
-
-

-
-

-
-

R
R
R
R
∗

-

-

-
-

-
-

-
-
-
-

-
-

-
-

S
S
S
S
∗

-

-

-
-

-
-

-
-
-
-

-
-

-
-

-
-
-
-
∗

-

-

-
-

∗
∗

∗
∗
∗
∗

∗
∗

∗
∗

-
-
-
-
∗

-

-

-
-

∗
∗

∗
∗
∗
∗

∗
∗

∗
∗

-
-
-
-
∗

-

-

-
-

∗
∗

∗
∗
∗
∗

∗
∗

∗
∗

-
-
-
-
∗

-

-

-
-

∗
∗

∗
∗
∗
∗

-
-

-
-

-
-
-
-
∗

-

-

-
-

-
-

-
-
-
-

-
∗

-
∗

-
-
-
-
-

-

-

-
-

320

Appendix B F2MC-16LX Instruction Lists (340 Instructions)

B.6 Other Instructions

Other instructions of the F2MC-16L are listed in the following four tables:
• Table B.6a for other control systems (Byte/Word/Long-word) : 28

instructions
• Table B.6b for bit operation instructions: 21 instructions
• Table B.6c for accumulator operation instructions (Byte/Word)

: 6 instructions
• Table B.6d for string instructions: 10 instructions

Other Instructions

Table B.6a Other Control Systems (Byte/Word/Long-word): 28 Instructions

*1 1 for PCB, ADB, SSB, USB, and SPB
2 for DTB and DPR

*2 7 + 3 x (number of POP operations) + 2 x (number of the last register that operates POP),
7 when RLST = 0 (no transfer register)

*3 29 + 3 x (number of PUSH operations) - 3 x (number of the last register that operates PUSH),
8 when RLST = 0 (no transfer register)

*4 (number of POP operations) x c, or (number of PUSH operations) x c

Mnemonic # ~ RG B Operation LH AH I S T N Z V C RMW

PUSHW A
PUSHW AH
PUSHW PS
PUSHW rlst

POPW A
POPW AH
POPW PS
POPW rlst

JCTX @A

AND CCR,#imm8
OR CCR,#imm8

MOV RP,#imm8
MOV ILM,#imm8

MOVEA RWi,ear
MOVEA RWi,eam
MOVEA A,ear
MOVEA A,eam

ADDSP #imm8
ADDSP #imm16

MOV A,brg1
MOV brg2,A

NOP
ADB
DTB
PCB
SPB
NCC
CMR

1
1
1
2

1
1
1
2

1

2
2

2
2

2
2 +
2

2 +

2
3

2
2

1
1
1
1
1
1
1

4
4
4
*3

3
3
4
*2

14

3
3

2
2

3
2 + (a)

1
1 + (a)

3
3

*1
1

1
1
1
1
1
1
1

0
0
0

 + &

0
0
0

 + &

0

0
0

0
0

1
1
0
0

0
0

0
0

0
0
0
0
0
0
0

(c)
(c)
(c)
*4

(c)
(c)
(c)
*4

6 × (c)

0
0

0
0

0
0
0
0

0
0

0
0

0
0
0
0
0
0
0

word (SP) ← (SP) -2, ((SP)) ← (A)
word (SP) ← (SP) -2, ((SP)) ← (AH)
word (SP) ← (SP) -2, ((SP)) ← (PS)
(SP) ← (SP) - 2n, ((SP)) ← (rlst)

word (A) ← ((SP)), (SP) ← (SP) + 2
word (AH) ← ((SP)), (SP) ← (SP) + 2
word (PS) ← ((SP)), (SP) ← (SP) + 2
(rlst) ← ((SP)), (SP) ← (SP)

Context switching instruction

byte (CCR) ← (CCR) and imm8
byte (CCR) ← (CCR) or imm8

byte (RP) ← imm8
byte (ILM) ← imm8

word (RWi) ← ear
word (RWi) ← eam
word (A) ← ear
word (A) ← eam

word (SP) ← ext(imm8)
word (SP) ← imm16

byte (A) ← (brg1)
byte (brg2) ← (A)

No operation
Prefix code for AD space access
Prefix code for DT space access
Prefix code for PC space access
Prefix code for SP space access
Prefix code for flag unchange setting
Prefix for common register banks

-
-
-
-

-
-
-
-

-

-
-

-
-

-
-
-
-

-
-

Z
-

-
-
-
-
-
-
-

-
-
-
-

∗
-
-
-

-

-
-

-
-

-
-
∗
∗

-
-

∗
-

-
-
-
-
-
-
-

-
-
-
-

-
-
∗
-

∗

∗
∗

-
-

-
-
-
-

-
-

-
-

-
-
-
-
-
-
-

-
-
-
-

-
-
∗
-

∗

∗
∗

-
-

-
-
-
-

-
-

-
-

-
-
-
-
-
-
-

-
-
-
-

-
-
∗
-

∗

∗
∗

-
-

-
-
-
-

-
-

-
-

-
-
-
-
-
-
-

-
-
-
-

-
-
∗
-

∗

∗
∗

-
-

-
-
-
-

-
-

∗
∗

-
-
-
-
-
-
-

-
-
-
-

-
-
∗
-

∗

∗
∗

-
-

-
-
-
-

-
-

∗
∗

-
-
-
-
-
-
-

-
-
-
-

-
-
∗
-

∗

∗
∗

-
-

-
-
-
-

-
-

-
-

-
-
-
-
-
-
-

-
-
-
-

-
-
∗
-

∗

∗
∗

-
-

-
-
-
-

-
-

-
-

-
-
-
-
-
-
-

-
-
-
-

-
-
-
-

-

-
-

-
-

-
-
-
-

-
-

-
-

-
-
-
-
-
-
-

321

Appendix B F2MC-16LX Instruction Lists (340 Instructions)

Note: For (a) to (d) in the table, see Table A.3, “Effective Address Field,” and Table A.4a, “Number of
Execution Cycles for Designating Each Effective Address.”

Table B.6b Bit Operation Instruction: 21 Instructions

*1: 8 when branch is made, 7 when branch is not made
*2: 7 when branch is made, 6 when branch is not made
*3: 10 when the condition is met, 9 when the condition is not met
*4: Undefined count
*5: Until the condition is met

Note: For (a) to (d) in the table, see Table A.3, “Effective Address Field,” and Table A.4a, “Number of
Execution Cycles for Designating Each Effective Address.”

Table B.6c Accumulator Operation Instruction (Byte/Word): 6 Instructions

Mnemonic # ~ RG B Operation LH AH I S T N Z V C RMW

MOVB A,dir:bp
MOVB A,addr16:bp
MOVB A,io:bp

MOVB dir:bp,A
MOVB addr16:bp,A
MOVB io:bp,A

SETB dir:bp
SETB addr16:bp
SETB io:bp

CLRB dir:bp
CLRB addr16:bp
CLRB io:bp

BBC dir:bp,rel
BBC addr16:bp,rel
BBC io:bp,rel

BBS dir:bp,rel
BBS addr16:bp,rel
BBS io:bp,rel

SBBS addr16:bp,rel

WBTS io:bp

WBTC io:bp

3
4
3

3
4
3

3
4
3

3
4
3

4
5
4

4
5
4

5

3

3

5
5
4

7
7
6

7
7
7

7
7
7

*1
*1
*2

*1
*1
*2

*3

*4

*4

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0

0

0

(b)
(b)
(b)

2 × (b)
2 × (b)
2 × (b)

2 × (b)
2 × (b)
2 × (b)

2 × (b)
2 × (b)
2 × (b)

(b)
(b)
(b)

(b)
(b)
(b)

2 × (b)

*5

*5

byte (A) ← (dir:bp)b
byte (A) ← (addr16:bp)b
byte (A) ← (io:bp)b

bit (dir:bp)b ← (A)
bit (addr16:bp)b ← (A)
bit (io:bp)b ← (A)

bit (dir:bp)b ← 1
bit (addr16:bp)b ← 1
bit (io:bp)b ← 1

bit (dir:bp)b ← 0
bit (addr16:bp)b ← 0
bit (io:bp)b ← 0

Branch when (dir:bp)b = 0
Branch when (addr16:bp)b = 0
Branch when (io:bp)b = 0

Branch when (dir:bp)b = 1
Branch when (addr16:bp)b = 1
Branch when (io:bp)b = 1

Branch when (addr16:bp) b = 1, bit = 1

Wait until (io:bp) b = 1

Wait until (io:bp) b = 0

Z
Z
Z

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-

-

-

∗
∗
∗

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-

-

-

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-

-

-

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-

-

-

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-

-

-

∗
∗
∗

∗
∗
∗

-
-
-

-
-
-

-
-
-

-
-
-

-

-

-

∗
∗
∗

∗
∗
∗

-
-
-

-
-
-

∗
∗
∗

∗
∗
∗

∗

-

-

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-

-

-

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-

-

-

-
-
-

∗
∗
∗

∗
∗
∗

∗
∗
∗

-
-
-

-
-
-

∗

-

-

Mnemonic # ~ RG B Operation LH AH I S T N Z V C RMW

SWAP
SWAPW / XCHW A,T
EXT
EXTW
ZEXT
ZEXTW

1
1
1
1
1
1

3
2
1
2
1
1

0
0
0
0
0
0

0
0
0
0
0
0

byte (A)0-7 ←→ (A)8-15
word (AH) ←→ (AL)
byte signed extension
word signed extension
byte zero extension
word zero extension

-
-
X
-
Z
-

-
∗
-
X
-
Z

-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-

-
-
∗
∗
R
R

-
-
∗
∗
∗
∗

-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-

Appendix B F2MC-16LX Instruction Lists (340 Instructions)

322

Table B.6d String Instruction 10 Instructions

*1 5 when RW0 is 0, 4 + 7 x (RW0) when count-out is detected, and 7n + 5 when the data in the AL register
matches the byte data specified by the AH register in the space that is specified by bank

*2 5 when RW0 is 0, 4 + 8 x (RW0) for otherwise
*3 (b) × (RW0) + (b) × (RW0):To access different areas for sources and destinations, calculate item (b)

 separately each other.
*4 (b) × n
*5 2 × (RW0)
*6 (c) × (RW0) + (c) × (RW0):To access different areas for sources and destinations, calculate item (c)

 separately each other.
*7 (c) × n
*8 2 × (RW0)

Notes: • m: RW0 value (counter value)
n : Number of loops

• For (a) to (d) in the table, see Table A.3, “Effective Address Field,” and Table A.4a, “Number of
Execution Cycles for Designating Each Effective Address.”

Mnemonic # ~ RG B Operation LH AH I S T N Z V C RMW

MOVS / MOVSI
MOVSD

SCEQ / SCEQI
SCEQD

FILS / FILSI

2
2

2
2

2

*2
*2

*1
*1

6m + 6

+&
+&

 +&
+&

+&

*3
*3

*4
*4

∗3

byte transfer @AH + ← @AL + , counter = RW0
byte transfer @AH − ← @AL-, counter = RW0

byte search @AH + ← AL, counter = RW0
byte search @AH − ← AL, counter = RW0

byte fill @AH + ← AL, counter = RW0

-
-

-
-

-

-
-

-
-

-

-
-

-
-

-

-
-

-
-

-

-
-

-
-

-

-
-

∗
∗

∗

-
-

∗
∗

∗

-
-

∗
∗

-

-
-

∗
∗

-

-
-

-
-

-

MOVSW / MOVSWI
MOVSWD

SCWEQ / SCWEQI
SCWEQD

FILSW / FILSWI

2
2

2
2

2

*2
*2

*1
*1

6m + 6

 +)
 +)

 +)
 +)

 +)

*6
*6

*7
*7

∗6

word transfer @AH + ← @AL + , counter = RW0
word transfer @AH − ← @AL-, counter = RW0

word search @AH + ← AL, counter = RW0
word search @AH − ← AL, counter = RW0

word fill @AH + ← AL, counter = RW0

-
-

-
-

-

-
-

-
-

-

-
-

-
-

-

-
-

-
-

-

-
-

-
-

-

-
-

∗
∗

∗

-
-

∗
∗

∗

-
-

∗
∗

-

-
-

∗
∗

-

-
-

-
-

-

