FUJITSU SEMICONDUCTOR CM42-00327-1E

CONTROLLER MANUAL

F2MC-16 FAMILY

16-BIT MICROCONTROLLER

EMBEDDED C
PROGRAMMING MANUAL

FOR fcc907

[o®)
FUJITSU






FMC-16 FAMILY

16-BIT MICROCONTROLLER

EMBEDDED C
PROGRAMMING MANUAL

FOR fcc907

FUJITSU LIMITED






PREFACE

m  Objectives and Intended Reader

The F2MC-16L/16LX/16/16H/16F (hereafter collectively referred to as the F2MC-16 Family) are
16-bit microcontrollers designed for embedded systems.

This manual provides information required for using the fcc907 F2MC-16 family C compiler to
create an embedded system. The manual explains how to create C programs that effectively

use the F2MC-16 family architecture and provides notes related to the creation of C programs.

This manual is intended for engineers who use the fcc907 to develop application programs for
the F2MC-16 family. Be sure to read this manual completely.

m Trademarks
Softune is a registered trademark of Fujitsu Limited.

Other system names and product names in this manual are trademarks of their respective
companies or organizations. The symbols ™ and ® are sometimes omitted in the text.

m  Structure of This Manual

This manual consists of the three parts listed below.

PART | "VARIABLE DEFINITIONS AND VARIABLE AREAS"
Part | describes the variable definitions and variable areas for creating C programs.

CHAPTER 1 "OBJECTS MAPPED INTO MEMORY AREAS"
This chapter briefly describes the memory mapping for a systems in which an F°MC-16
family microcontroller was embedded.

CHAPTER 2 "VARIABLE DEFINITIONS AND VARIABLE AREAS"

This chapter describes the variable definitions and variable areas to which the results of
compilation are output. It also describes the variable areas for variables that are initialized at
definition and the variable area for those that are not. In addition, the chapter describes
variables declared as "static."

CHAPTER 3 "READ-ONLY VARIABLES AND THEIR VARIABLE AREA"

This chapter describes how to use variables declared with the type-qualifier "const" that are
only read at execution time and provides notes on their use. This chapter also discusses the
reduction of the variable area and object efficiency for referencing when the "const" type
modifier is used.

CHAPTER 4 "USING AUTOMATIC VARIABLES TO REDUCE THE VARIABLE AREA"

This chapter explains how to reduce the variable area by using automatic variables. Area is
allocated to automatic variables at execution time.

CHAPTER 5 "ACCESSING VARIABLES THAT USE BIT FIELDS"

This chapter describes how to access variables that use bit fields.



PART Il "USING STACK AREA EFFICIENTLY"

Part Il describes how to use the stack area efficiently.
CHAPTER 6 "FUNCTION CALLS AND THE STACK"

This chapter briefly describes the stack area used when a function is called.
CHAPTER 7 "REDUCING FUNCTION CALLS BY EXPANDING FUNCTIONS IN LINE"

This chapter describes how to reduce the stack area by using inline expansion of functions in
function calls.

CHAPTER 8 "REDUCING THE ARGUMENTS TO CONSERVE STACK AREA"

This chapter describes how to reduce the number of arguments in function calls so that less
stack area is required.

CHAPTER 9 "CONSERVING STACK AREA BY IMPROVEMENTS ON THE AREA FOR
FUNCTION RETURN VALUES"

This chapter explains the function return values for the register and the stack. Reducing the
return values for the stack can reduce the used stack area.

PART Il "USING LANGUAGE EXTENSIONS"

Part 11l describes the language extensions specific to the fcc907. Part Il also discusses
items in the extended language specifications that require special attention.

CHAPTER 10 "WHAT ARE LANGUAGE EXTENSIONS?"

This chapter describes the fcc907-specific extended language specifications, such as the
qualifier for extensions, _ _asm statement, and "#pragma."

CHAPTER 11 "NOTES ON ASSEMBLER PROGRAMS IN C PROGRAMS"

This chapter provides notes on including assembler code with the _ _asm statements and
#pragma asm/endasm of the extended language specifications.

CHAPTER 12 "NOTES ON DEFINING AND ACCESSING THE I/O AREA"
This chapter provides notes on specifying and mapping when using the _ _io type qualifier.
CHAPTER 13 "MAPPING VARIABLES QUALIFIED WITH THE _ _direct TYPE QUALIFIER"

This chapter provides notes on specifying and allocating variables declared with the _ _direct
type qualifier.

CHAPTER 14 "CREATING AND REGISTERING INTERRUPT FUNCTIONS"

This chapter provides notes on using language extensions of the fcc907 to enable interrupt
processing.

PART IV "MAPPING OBJECTS EFFECTIVELY"
This part explains how to map objects effectively.
CHAPTER 15 "MEMORY MODELS AND OBJECT EFFICIENCY"
This chapter describes the memory models of the fcc907 and explains object efficiency.
CHAPTER 16 "MAPPING VARIABLES QUALIFIED WITH THE TYPE QUALIFIER CONST"
This chapter provides notes on mapping variables declared with the type qualifier const.
CHAPTER 17 "MAPPING PROGRAMS IN WHICH THE CODE AREA EXCEEDS 64 Kbytes"
This chapter describes how to map programs when the code area exceeds 64 Kbytes.
CHAPTER 18 "MAPPING PROGRAMS IN WHICH THE DATA AREA EXCEEDS 64 Kbytes"

This chapter describes how to map programs when the data area exceeds 64 Kbytes.



In this manual, the designation <Notes> indicates items requiring special attention.
The sections entitled "Tip" provide information on functions that is useful for creating programs.

The Softune C Checker analyzes C source programs and outputs a warning for items requiring
attention to ensure that the fcc907 does not output an error message.

The Softune C Analyzer analyzes function calls within the C source code of the program and
displays information about such items as variables, relationship between function references,

and the used amount of stack areas.



. The contents of this document are subject to change without notice. Customers are advised to consult

with FUJITSU sales representatives before ordering.

. The information and circuit diagrams in this document are presented as examples of semiconductor

device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is
unable to assume responsibility for infringement of any patent rights or other rights of third parties
arising from the use of this information or circuit diagrams.

. The contents of this document may not be reproduced or copied without the permission of FUJITSU

LIMITED.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office
automation and other office equipments, industrial, communications, and measurement equipments,
personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal
operation may directly affect human lives or cause physical injury or property damage, or where
extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls,
sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to
consult with FUJITSU sales representatives before such use. The company will not be responsible for
damages arising from such use without prior approval.

. Any semiconductor devices have inherently a certain rate of failure. You must protect against injury,

damage or loss from such failures by incorporating safety design measures into your facility and
equipment such as redundancy, fire protection, and prevention of over-current levels and other
abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain
restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior
authorization by Japanese government should be required for export of those products from Japan.

© 2000 FUJITSU LIMITED Printed in Japan




CONTENTS

PART | VARIABLE DEFINITIONS AND VARIABLE AREAS ..., 1
CHAPTER 1 OBJECTS MAPPED INTO MEMORY AREAS ..., 3
T o oo =Y 0 O 01 ] o 1 1= 1 1 £ 4
2 V.- Vo o T a Lo BT a1 (o TN Y [=T o g o] Y A Y- USSR 6
1.3 Dynamically Allocated Variables ..............oouiiiiiiiiiiiiie e a e e 8
1.4  Statically Allocated VariabIESs ..........cooii oo e e a e e e e 10
CHAPTER 2 VARIABLE DEFINITIONS AND VARIABLE AREAS ..., 13
2.1 External Variables and Their Variable Ar€a ... 14
2.2 Initial Values and Variable Area for External Variables ............ccociiiiiiiiiiiieiiin e, 17
2.3 Initialized Variables and Initialization at EXECULION ..........cccuiiiiiiiiee e e e e e 19
2.4  Variables Declared as "static" and Their Variable Area .........cccccceei i 21
2.4.1 Example of Function with Static Global Variable ... 23
2.4.2 Example of aunction with Static Local Variable ...........cccceeiiiiiiii e 24
CHAPTER 3 READ-ONLY VARIABLES AND THEIR VARIABLE AREA .................... 25
3.1 Numeric Constants and #defing DefiNitioN ...........cceviiiiiiiiiiic e 26
3.2 Defining Variables Using the const Type QUAlIfIEr .........cooiiiiiiiiiiiiii e 28

CHAPTER 4 USING AUTOMATIC VARIABLES TO REDUCE THE

VARIABLE AREA ..o 31
4.1  Automatic Variables and Statically Allocated Variables ... 32
4.2 Using AULOMALIC VariaBIES .......ccooiiiiiiiieie e e e e e e e 35

CHAPTER 5 ACCESSING VARIABLES THAT USE BIT FIELDS ..., 39
L0 R = To 1¥ ] o FoY VA 2 1o T 0 1= 0 o) (o3 [0 2R 40
5.2 Bit Field Definitions and Boundary AlIGNMENT ..........coiiiiiiiiiiieiieee e e e e e e e e 41
5.3 Accessing I/O Areas Using Bit Fields and UNIONS ............oooviiiiiiiieiiiee e ene e e 44
PART I USING STACK AREA EFFICIENTLY ... 45
CHAPTER 6 FUNCTION CALLS AND THE STACK ..o 47
6.1 Areas Allocated on the Stack during FUNCION CallS ............ooiiiiiiiiiiiiiii s 48
6.2 Stack States When Function Calls Are NESIEA ........cccovceiiiiiiiiieiee e 50

CHAPTER 7 REDUCING FUNCTION CALLS BY EXPANDING FUNCTIONS

IN LINEE oo e e e e e et e e et e e et e e e e e e e e aaeeannaee 51
7.1 Inline EXPanSIioN Of FUNCHION ......uuiiiiiiii it ie e s e e e e e e ss s ee e e e e e e e s s s snnnebreneeeaeeeeeeeeeannnnnes 52
7.2  Conditions for Inline EXpansion Of FUNCHON ... r e e e e e e s 55



CHAPTER 8 REDUCING ARGUMENTS TO CONSERVE STACK AREA ... 57

8.1 Passing Arguments DUring FUNCLON CallS ..........cooiiiiiiiiiiiiieiiie e e e e e e e e e e e e 58
8.1.1  NOrmal ArgUmENT PASSING ...ccoiiiiiiiiiiiiiaeie e e ittt e e e e e e e e e e et e ittt et eaa e e e e aasanbbaebeeeaaaaeeaaaannnsnnnrreneees 59
8.1.2  Argument SrUCIUIE PASSING ....ccuuuuuieiiiieieeiiii ittt e e e eeeesssssstantaeereeeeeeeessnsnnsran e eraeeeessanannnsnnnsrnneees 60
8.1.3  Structure AdAreSS PASSING ......cccccuvriiiiiiiieeeiesiiiiiieee e e e e e s s e s astnt e eeeeeeeeesasnstanreeraeeaeesansannnnrrnneees 61
8.1.4 Stack Status During FUNCLION CallS .......cooiiiiiiiiiiiiiiie e e e 62

8.2  Conditions for Structure AAAress TraNSTEr ......cooi i e 63

CHAPTER 9 CONSERVING STACK AREA BY IMPROVEMENTS ON THE AREA FOR

FUNCTION RETURN VALUES ... et 65
9.1  Return Value Of FUNCLIONS ....coiiiiiiiieiiiiiee ittt ettt ettt e ettt e e e s sttt e e e s sbbe e e e e sbbbeeeeeessbbeeeeesnes 66
9.2  Functions Returning Structure-type Values and Stack Conservation ..........cccccceeeeevviiiiiiiieeineeeeessnnnns 73
9.3  Functions Returning Union-type Values and Stack CONSErvation ............ccccccciereiiiiiiiiiiieeieaee e 77
PART Il USING LANGUAGE EXTENSIONS ... 81
CHAPTER 10 WHAT ARE LANGUAGE EXTENSIONS? ..o 83
10.1 Coding Assembler Instructions Using an __asm Statement ..........cccovvieveeeieee e cccciiiieeceee e 84
10.2 Extended TYPE QUALFIEIS .....oiiiiiiiiiiii ettt e e e e e e s e e bbb e e e e e e e e e s e e e e e e e e s nnnbbeeeees 85
10.2.1 _ near Type Qualifier and _ _far Type QUAlIfIer ........ccooviiiiiiiiii e 86
0 B2 (o T 1Y/ o L= @ T - 1= SRS 88
10.2.3 _ _direCt TYPe QUANTIEE ...ttt e e e e e e e e e et e et be e e e e aaeeaaean 90
10.2.4 _ _interrupt TYPE QUANTIEE ...uvviiiiiiieii it r e e e e e e e e e e b e e ereeeees 91
10.2.5 _ nosavereg TYPE QUANIFIET ....eeuiiieii it e e e s e e e e e e e e e s s nr e e eeneereeeees 93
10.3 Extended FUNCHONS USING HPIAgIMA ......uueiiiiiiiaiiiiiiiiiiiieeeea e e e e e et e eeeaa e e e e s e aanbaesaeeeaaeaeesaaanbesanbeseees 95
10.3.1 Inserting Assembler Programs Using #pragma asm/€Ndasm ..........ccoevvcuerrrerieeeeesininisinnnnnneeeeeesees 96
10.3.2 Specifying Inline Expansion Using #pragma inling ...........cccvviiiiiereiiiii e sieeee e e e 97
10.3.3 Using #pragma section to Change Section Names and Specify Mapping Address ...........ccccoe..... 99
10.3.4 Specifying the Interrupt Level Using #pragma ilm/Noilm ..........cccccoeeiiiiiiiiiiiiieee e 101
10.3.5 Setting the Register Bank Using #pragma register/NOregister ..........cccovvvvvvereeeeeeesiissiinieeeeeeeeen 103
10.3.6 Setting Use of the System Bank Using #pragma SSb/NOSSD .........coooiiiiiiiiiiiiieeeeeeen 105
10.3.7 Setting the Stack Bank Automatic Identification Function Using #pragma except/noexcept ....... 107
10.3.8 Generating an Interrupt Vector Table Using #pragma intvect/defvect .........ccccccceevviviciiiiiienennnn. 109
10.4 Interrupt-Related BUilt-in FUNCHIONS  .....uiiiiiiiiiiie ettt e e e e e e e e 111
10.4.1 Disabling Interrupts USING  DI() tooieiiiiiiieeie et s e e e e e e e s et e e e neeeeeeaeeeas 112
10.4.2 Enabling INterrupts USING _ EI() coveeeiiiiiiieeeee et en e e e e e en e e e e e e e 113
10.4.3 Setting the Interrupt Level USING _ SEE l() wevreieiieiiiiiiiiee e 114
10.5 Other BUIlt-iN FUNCLONS ...ooiiiiiiiiiiiiiiie ettt ettt ettt e e e st e e e st e e e e e nnbe e e e e s snbreeesenneeas 115
10.5.1 Outputting a Nop Instruction Using __ Wait_NOP() «.oooeeevrrriiirireee s ee e e e e e e s eer e e e e 116
10.5.2 Signed 16-Bit Multiplication USING _ MUI() .eeeeiiiiiiiiiiiiiiiieeeeee e a e 117
10.5.3 Unsigned 16-Bit Multiplication Using __ MUIU() ..eeeeeiiiiiiiiiiieieeee e ee e e 118
10.5.4 Signed 32-Bit/Signed 16-Bit Division USINg _ diV() ..oocccivriiriiieee e eee e e 119
10.5.5 Unsigned 32-Bit/Unsigned 16-Bit DiviSion USiNG __ diVU( ) ..eeeeiiiiiiiiiiiieiieeeeeeee e 120
10.5.6 Signed 32-Bit/Signed 16-Bit Remainder Calculation Using __ mod( ) ....ccccevvrveeeeiiiiiciiniieeeeeeenn. 121
10.5.7 Unsigned 32-Bit/Unsigned 16-Bit Remainder Calculation Using __modu() .........eceecvvvvvvvereeennn. 122

Vi



CHAPTER 11 NOTES ON ASSEMBLER PROGRAM IN C PROGRAMS .........cccccvveeee 123

11.1 Including Assembler COde iN C PrOQramsS ......ceuiieoieiiiiiiiieeieeeee e e e e sssssieereeeeesae e s s ssnsaseneeeeeaessssesnssnnns 124
11.2 Differences Between Using the _ _asm Statement and #pragma asm/endasm ..........ccccccceeeeeennnns 127
CHAPTER 12 NOTES ON DEFINING AND ACCESSING THE I/O AREA .......cccccce..... 131
12,1 MOOBT8 SEIES /O AFBAS ..ceiviiieeiitieie ettt e sttt ettt e e e s et e e e e st e et e e e st bttt e e e abbe e e e e anbbaee e e s snnbbeeeeennreeas 132
12.2 Defining and Accessing Variables Mapped into the I/O Area .........ccccvvvvivieeee e 134

CHAPTER 13 MAPPING VARIABLES QUALIFIED WITH THE

_direCt TYPE QUALIFIER ..oveeeeeet ettt 141

13.1 Output Sections of and Access to Variables Qualified by the _ _direct Type Qualifier .................... 142
13.2 Mapping Variables Qualified by the _ _direct Type Qualifier ..........cooiiiiiiiiii 144
CHAPTER 14 CREATING AND REGISTERING INTERRUPT FUNCTIONS .................. 147
14.1 F2MC-16 FamMily INTEITUDLS ..eevieeeiiiiiiiiiiee it et e e e e e s st e e e e e e e e e s s st ae e e e e e e e e e s sssannsntananeaaaeaeaeeeessnnnsnnes 148
14.2 Required Hardware Settings for INTEITUPLS ....ocvveiiii i i e e e e e e e e eennnes 150
14.2.1 Setting the SYSEM STACK AFBA .....ceeiiiiiiii ittt e et e e e e e e e s s b e ae s nrreeeeeas 151
0 [ 1 =Y [ 4] o T =Yoo = 153
14.2.3 Setting Interrupt CoNtrol REQISIEIS ...civiiiiiiii it e e e e s e e e e e e e e e s anna e enereees 154
14.2.4 Starting RESOUICE OPEIALION ........euiiiiiiiieiii ittt ie e e e e e et et e e e e e e e e e aa s aaabebbeeeaeaaeeaseeaannnnreeeeeeas 156
I ST = o= o] T o @ = U 1 (=T U o) S 157
14.3 Using the _ _interrupt Type Qualifier to Define Interrupt FUNCLIONS .........cccvvviiieviieee e, 162
14.4  Setting Of INTEITUPE VECTIOIS ...oiiiiiiii ittt ettt e e e e e e s ettt e e e e e e e e aaaaaeeeaannanes 166
PART IV  MAPPING OBJECTS EFFECTIVELY .coni et 169
CHAPTER 15 MEMORY MODELS AND OBJECT EFFICIENCY ...cccooovviiirieieicieiennn, 171
15.1 FOUIr MEMOIY MOGEIS ....ouiieiiiiiiiieii ittt e e e e e e e e e e e s s e st e e e e e aeeesssasnsetanaereeeeaaeeeeeesannennes 172
15.2 Large Models and Object EffilCIENCY .........uuiiiiiiiiiii e 175

CHAPTER 16 MAPPING VARIABLES QUALIFIED WITH THE

TYPE QUALIFIER CONST ..ot 177

16.1 Using the Mirror ROM Function and const Type Qualifier ... 178
16.1.1 const Type Qualifier and Mirror ROM Function for Small and Medium Models ............ccccvveeeee. 179
16.1.2 const Type Qualifier and Mirror ROM Function for Compact and Large Models ............ccccvveeeen. 182
16.2 const Type Qualifier When the Mirror ROM Function Cannot Be Used ..........cccoooiiiiiiiiiiiiiienennins 184
16.2.1 Mapping Variables Qualified by the const Type Qualifier to RAM Area ........ccccccvvvveeeieeiiccnvvennnnn. 185
16.2.2 Specifying the const Type and _ _far Type Qualifiers at Definition ...........ccccccccvvveeivii e, 187

CHAPTER 17 MAPPING PROGRAMS IN WHICH THE CODE AREA EXCEEDS

G 14 ) (= 189

17.1 Functions Calls of Programs in Which the Code Area Exceeds 64 Kbytes ..........cccccvvevvvieeeeniicinnnee, 190
17.2 Using Calls For Functions Qualified by the _ _far Type Qualifier .........ccccciiiiiiiii 191
17.3 Mapping Functions Qualified by the __far Type Qualifier .........ccooooiiiiiiiiiii e 194
17.3.1 Functions Qualified by the __far Type Qualifier for Small and Compact Models ........................ 195
17.3.2 Functions Qualified by the _ _far Type Qualifier for Medium and Large Models .............ccccuveeeeee. 197
17.4 Using Calls for Functions Qualified by the _ _near Type Qualifier ........cccccceeveeiiiiiiciiiiiie e, 200

Vi



17.5 Mapping Functions Qualified by the _ _near Type Qualifier ... 202

CHAPTER 18 MAPPING PROGRAMS IN WHICH THE DATA AREA EXCEEDS

G714 0) Y = ST 205

18.1 Function Calls of Programs Where the Data Area Exceeds 64 KDYtes .........cccooviiiiiiiiiiiiiiiiiiniiinins 206
18.2 Using Calls For Variables Qualified by the __far Type Qualifier .........ccccceveeviiiiiiiiece e, 208
18.3 Mapping Variables Qualified by the __far Type QuUalifier ..........cccooviiiiiiiiiii e, 210
18.3.1 Variables Qualified by the _ _far Type Qualifier for Small and Medium Models ...............cccce..... 211
18.3.2 Variables Qualified by the __far Type Qualifier for Compact and Large Models ...........ccccceee... 214
18.4 Using Calls For Variables Qualified by the _ _near Type Qualifier ........cccccceeeeiiiiiiiiiiiiiieee e, 217
18.5 Mapping Variables Qualified by the _ _near Type Qualifier ... 219
I3 223

viii



PART | VARIABLE DEFINITIONS AND VARIABLE
AREAS

This part describes the variable definitions and variable areas for creating C programs.
This part first briefly describes memory mapping and the variables used for creating

an F2MC-16 family microcontroller embedded system. It then briefly describes the
relationship between the variable definitions and variable areas. It concludes by
describing how to efficiently create C programs.

CHAPTER 1 "OBJECTS MAPPED INTO MEMORY AREAS"
CHAPTER 2 "VARIABLE DEFINITIONS AND VARIABLE AREAS"
CHAPTER 3 "READ-ONLY VARIABLES AND THEIR VARIABLE AREA"

CHAPTER 4 "USING AUTOMATIC VARIABLES TO REDUCE THE VARIABLE
AREA"

CHAPTER 5 "ACCESSING VARIABLES THAT USE BIT FIELDS"






CHAPTER1 OBJECTS MAPPED INTO MEMORY

AREAS

This chapter briefly describes objects that are mapped into memory areas before
taking up the subject of the variable.

11"
1.2 "
13"
14"

Program Components"
Mapping into Memory Areas"
Dynamically Allocated Variables"

Statically Allocated Variables"



CHAPTER 1 OBJECTS MAPPED INTO MEMORY AREAS

1.1

Program Components

This section briefly describes the program components.
Programs can be roughly divided into code and data.

m Program Components

Programs created in C (C programs hereafter) and programs created in Assembler (assembler
programs hereafter) can both be roughly divided into code and data sections.

Code (machine instruction): Read only
Program

Data: Read and write

Code
This section in the program contains the machine instructions to be executed by the CPU.

The algorithm, which is coded as functions in a C program, is compiled and converted to
machine instruction code.

The term "Code" refers to a set of execution instructions that are only read at execution.

Data
The data is accessed by the program.

In a C program, the data includes variables, character strings, literal constants, and initial
values.

Data can be read and written depending on the processing.

A C program can be classified as shown in Figure 1.1-1 "Classification of Objects in Programs
for Embedded Systems and Allocation of Objects in the Memory Area". Variables, which are
data items, can be classified into three types: Variables that are allocated dynamically,
variables that are allocated statically, and variables that are allocated to the I/O area.

Dynamically allocated variables are allocated in a stack. Statically allocated variables can be
classified into variables that are initialized and variables that are not. Initialized variables can be
allocated both in the initial value area and the variable area.



1.1 Program Components

Figure 1.1-1 Classification of Objects in Programs for Embedded Systems and Allocation of Objects in
the Memory Area
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CHAPTER 1 OBJECTS MAPPED INTO MEMORY AREAS

1.2 Mapping into Memory Areas

This section briefly describes the types of memory areas and the objects that are
mapped into them.

In embedded systems that use an F 2MC-16 family microcontroller, the memory area
can be mainly classified into ROM, RAM, and /O area.

m  Mapping into Memory Areas

An embedded system that uses an F2MC-16 family microcontroller uses three types of memory
areas: ROM area, RAM area, and /O area.

0 Read only memory (ROM) area
Objects mapped into the ROM area can only be read.

The code and initial value areas are allocated in the ROM area.

0 Random access memory (RAM) area
Objects mapped into the RAM area can be read and written.

The data areas that are read and written to during program execution are allocated in the RAM
area.

Stacks are also allocated in the RAM area.

O Input/output (I/0O) area

I/O objects are mapped into the 1/O area.

As shown in Figure 1.2-1 "Objects Generated by the C Compiler and Mapping into Memory
Areas", code and the initial values of variables that can only be read at execution time are
mapped into the ROM area. Variables that are read and written at execution time are mapped
into the RAM area.

<Notes>

Since the values in the RAM area are undefined at system start, variables that are mapped
into the RAM area must be initialized as described below before program execution:

» Variable areas that are not initialized must be initialized to 0.
e The variables in the RAM area must be initialized using the initial values in the ROM area.

This initialization operation are performed using an initialization program called a startup
oAl
routine-.

The objects are mapped into their memory area during linking.

1. The startup routine is a program that performs initialization before executing the C program. An
example for this is the program startup.asm supplied as a sample with the C compiler.
Refer to the C compiler manual for information about the operations performed by the startup rou-
tine.



1.2 Mapping into Memory Areas

Figure 1.2-1 Objects Generated by the C Compiler and Mapping into Memory Areas
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CHAPTER 1 OBJECTS MAPPED INTO MEMORY AREAS

1.3 Dynamically Allocated Variables

This section briefly describes the dynamically allocated variables.
In a C program, the automatic variables that are defined in functions and the register
variables are allocated dynamically.

m Dynamically allocated variables
In a C program, the dynamically allocated variables are the automatic variables and the register
variables defined in functions.
O Automatic variables
» One type of local variables
» Defined in functions
» Able to be accessed only in the function in which they were defined

» Allocated in a stack

O Register variables
» One type of local variable
» Defined in a function
» Able to be accessed only in the function in which they were defined

e Allocated in registers

As shown in Figure 1.3-1 "Dynamically Allocated Variables", the stack area is allocated for
automatic variables when a function is called. This area is deallocated when the function
terminates. Automatic variables can be accessed only in the function that defined them.

During a function call, a register variable receives priority allocation to a hardware register. The
register is released when the function terminates. As with automatic variables, register
variables can be accessed only in the function in which they are defined.



1.3 Dynamically Allocated Variables

Figure 1.3-1 Dynamically Allocated Variables
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CHAPTER 1 OBJECTS MAPPED INTO MEMORY AREAS

1.4 Statically Allocated Variables

This section briefly describes the statically allocated variables.
In a C program, external variables that are defined outside a function and variables
declared as "static" are both allocated statically in a fixed RAM area.

m Statically Allocated Variables
In a C program, external variables that are defined outside a function and variables declared as
"static" are both allocated statically.
O External variables
» Defined outside a function
» Able to be accessed from the entire module

» Statically allocated in memory

00 Static variables
» Able to be accessed only within their defined scope

» Statically allocated in memory

As shown in Figure 1.4-1 "Statically Allocated Variables", external variables and static variables
are allocated in a fixed RAM area at program execution. External variables can be accessed by
all functions. Static variables are valid only within their defined scope. For details of static
variables, see Section 2.4 "Variables Declared as "static" and Their Variable Area".
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1.4 Statically Allocated Variables

Figure 1.4-1 Statically Allocated Variables

Statically allocated variables
External variables
Static variables
Allocated in the RAM area
The variables exist in the RAM area Variable area in RAM
The values can be read and
int currpid; written by all functions.
int nextproc; void initproc (void)
int semeont; - External variable L flags
e ot definitions currpid 4+ '
’ nextproc - 0-
Semcont <\ = 0;
int semno = 10; Area for currsem 4
external nextsenm @extprod = 1;
extern void initproc (void); variables o °
extern int initsem(int); ° o
extern int wait (int); ser:no‘ } *
[
void main (void) L4 "
( ¢ cont \
int userpid = 10; '
int a: int initsem(int num) Definition
) of "static"
initproc( ); Are_a of SIatI_C Ioc_aI [static int cont; —| local
variable defined in variable
a = initsem(userpid); function initsem( ) \
) — num;
. @ Gemd
.
} N return( .);
}




CHAPTER 1 OBJECTS MAPPED INTO MEMORY AREAS

12



CHAPTER 2 VARIABLE DEFINITIONS AND VARIABLE
AREAS

This chapter briefly describes the variable definitions and variable areas to which
variables are output as a result of compilation. It then describes the relationship
between initial values and the variable areas used for variables. The chapter also
describes variables declared as "static,” which is one type of static variables that have
a special format.

2.1 "External Variables and their Variable Area"
2.2 "Initial Values and Variable Area for External Variables"
2.3 "Initialized Variables and Initialization at Execution"

2.4 "Variables Declared as "static" and their Variable Area"

13



CHAPTER 2 VARIABLE DEFINITIONS AND VARIABLE AREAS

2.1 External Variables and Their Variable Area

This section briefly describes the external variables and the variable areas.
The external variables are defined outside a function. The area for external variables
is fixedly allocated in RAM.

m External Variables

As shown in Figure 2.1-1 "Definitions of External Variables", the external variables, which are
defined outside a function, are statically allocated. They are allocated in the memory area and
can be accessed from the entire module.

Figure 2.1-1 Definitions of External Variables

Fixed variable area in RAM
Values can be read and written by all
int currpid; functions.

int nextproc;
int semcont; Definitions of external
int currsem; variables :
. currpid
int nextsem; TexXEtproc
semcont
int semno = 10; Area for currsem
external nextsem
extern void initproc (void); variables D
. L . .
extern int initsem (int); .
extern int wait(int); Semno
L]
void main(void) .
{
int userpid = 10;
int a;
initproc ( );
a = initsem (userpid) ;

The name of the section to which a variable is output as a result of compilation depends on the
storage class, type qualifier, and whether an initial value is specified at definition. For details,
see the fcc907 manual. Table 2.1-1 "Variables and Data Section to Which a Variable Is Output
(for Small and Medium Models)" and Table 2.1-2 "Variables and Data Section to Which a
Variable Is Output (for Large and Compact Models)" list the relationship between the external
variable definitions and the section to which a variable is output as a result of compilation.

14



2.1 External Variables and Their Variable Area

Table 2.1-1 Variables and Data Section to Which a Variable Is Output (for Small and Medium Models)

Type qualifier Variable area Initial value area
Specification
__io _ _direct const _ _near _ _for of Initial value  Section Section Section type Section
type name name
DATA DATA
o DATA INIT CONST DCONST
o] o] CONST CONST DATA CINIT
o] DIR DIRDATA
o] o] DIR DIRINIT DIRCONST DIRCONST
(o] 10 10
o DATA DATA
o] o] DATA DINIT CONST DCONST
o] o] o] CONST CONST DATA CINIT
o] DATA DATA_*
o] o DATA DINIT_* CONST DCONST_*
o] o] CONST CONST_* DATA CINIT_*

Table 2.1-2 Variables and Data Section to Which a Variable Is Output (for Large and Compact Models)

Type qualifier Variable area Initial value area
Specification
__io _ _direct const _ _near _ _for of Initial value  Section Section Section type Section
type name name
DATA DATA_*
o] DATA INIT_* CONST DCONST_*
o] o] CONST CONST_* DATA CINIT_*
o] DIR DIRDATA
o] o] DIR DIRINIT DIRCONST DIRCONST
o] 10 10
o] DATA DATA
o] o] DATA DINIT CONST DCONST
o] o] o] CONST CONST DATA CINIT
o] DATA DATA_*
o] o] DATA DINIT_* CONST DCONST_*
o] o] CONST CONST_* DATA CINIT_*

[Tip]
Softune C Checker:

The Softune C Checker outputs a warning for variables in an analyzed module that are not
accessed at all during external access. Accordingly, define external variables only after

15



CHAPTER 2 VARIABLE DEFINITIONS AND VARIABLE AREAS

verifying the intended scope. Meaningless access declarations make a program look poorly
written.

16



2.2 Initial Values and Variable Area for External Variables

Initial Values and Variable Area for External Variables

This section describes the relationship between the initial values and variable areas of
external variables.

In fcc907, when an initial value is specified at definition of an external variable,
variable area is allocated in both the ROM and RAM areas.

Initial Values and the Variable Area for External Variables

Variables can be classified into the following three types according to how initialization is
handled when the variables are defined. Whether an initial value is required depends on the
way in which the variable is to be used.

Initial value not required

No initial value specification (The variable does not need to be initialized to 0.)
Initial value O

No initial value specification (The variable must be initialized to 0.)
Initial value other than O

An initial value other than 0 is specified

The fcc907, handles two types of external variables: external variables for which an initialization
value is specified when they are defined (initialized variables hereafter) and external variables
for which no initialization value is specified when they are defined (uninitialized variables
hereafter).

The variable area and initial value area sections are output for initialized variables. For
uninitialized variables, the section variable area are output.

Figure 2.2-1 "Variable Areas and Memory Mapping" shows the relationship between the output
sections and memory mapping for initialized and uninitialized variables. For initialized variables,
a variable area is allocated in both ROM and RAM. The RAM area values are undefined at
system start. After system start, the startup routine transfers the initial values from ROM to the
RAM variable area. This operation completes initialization of the variable.

For uninitialized variables, a variable area is allocated only in RAM. The value of this RAM area
is also undefined at system start. After system start, the startup routine initializes all values in
the variable area for uninitialized variables to 0.

<Notes>

Although the startup routine provided as a sample initializes all uninitialized variables to 0,
perform initialization based on the program system that is to be created.
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Figure 2.2-1 Variable Areas and Memory Mapping

Uninitialized variable

int datal;

DATA \[

Link

For an uninitialized variable, a variable
area is allocated only in RAM.

The startup routine initializes all values in
this area to 0.

\ /

ROM area

DCONST

RAM area

INIT

DATA

Initialized variable

int 1_data =123;

/
INIT DCONST

«

The initial value area is allocated in the
ROM area, and the area accessed at
execution is allocated in the RAM area.
For an initialized variable, an area of twice
the size of the defined variable is required
in the ROM and RAM areas.

The startup routine transfers the initial
values in the ROM area to the variable
area in RAM.




2.3

2.3 Initialized Variables and Initialization at Execution

Initialized Variables and Initialization at Execution

This section describes initialized variables and the initialization of uninitialized
variables at program execution.

m [nitialized Variables and Initialization at Execution

As shown in Figure 2.2-1 "Variable Areas and Memory Mapping", initialized variables require an
initial value area and a variable area, which means that the totally required area is twice that of
defined variables. For uninitialized variables, only a variable area needs to be allocated.
Because the initialization value is only accessed the first time, a method is also provided that
allows to initialize the variable when the respective function is executed, making it unnecessary
to specify an initial value at definition time.

Figure 2.3-1 "Initialized Variables and Initial Value Assignment at Function Execution" shows an
example of a function in a variable is initialized beforehand, and an example of a function in
which the value is set at the beginning of the function.

See function listl( ) in (1), "Definition as an initialized variable,” in Figure 2.3-1 "Initialized
Variables and Initial Value Assignment at Function Execution". Function listl( ) allocates a 2-
byte area in the variable area, INIT section, and initial value area DCONST section for variable
i_data for which an initial value specified. The INIT section is allocated in RAM and the
DCONST section is allocated in ROM. The startup routine transfers the initial value from ROM
to the variable area in RAM.

See function list2( ) in (2), "Assigning a value when the variable is used," in Figure 2.3-1
"Initialized Variables and Initial Value Assignment at Function Execution”. Function list2( )
allocates only a 2-byte variable area DATA for the variable i_data in RAM. However, a code for
assigning a value to the variable is required. Compared with (1), the area for the value is
smaller by 2 bytes, but the code area is bigger by 6 bytes.

The startup routine is used to transfer the initial value of the variable to the variable area in
RAM. To assign an initial value in the function, a 6-byte code is required whenever a 2-byte
variable is assigned.

If we take the case of a variable that is initialized using 10 different values, code of (6 bytes x
10) = 60 bytes is required. When a variable is defined as an initialized variable, the value area
in the ROM will increase by 20 bytes. Because the startup routine handles transfer, it is
assumed that the size of the code will not increase. Thus, when the increase of 60 bytes in
code is conmpared with the increase of 20 bytes in the variable area, it can be said that use of
the ROM area is more economically when an initialized variable is defined.

<Notes>

Setting an initial value for a variable that does need not to be initialized wastes ROM area.
Setting an initial value of 0 at definition time and using the startup routine to initialize
uninitialized variables to 0 wastes initial value area. Set the initial value of an external
variable only after carefully checking whether initialization is necessary.
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Figure 2.3-1 Initialized Variables and Initial Value Assignment at Function Execution

(1) Definition as initialized variable

1 int i_data = 0x1234; 1 int i_data;
2 2
3 int listl(int data) 3 int list2(int data)
4 4 1,
5 if (!data) 5 {i_data = 0x1234;
6 return (i_data); 6 i
7 7 if (!data)
8 return(i_data + data) ; 8 return(i_data) ;
9 } 9
10 return(i_data + data);
1 ) \
The size of the object to be generated differs. MOVW _i_data, #4660

(2) Assigning a value when the variable
is used

NO SECTION-NAME SIZE ATTRIBUTES

0 DCONST . . . . . . 000002 CONST REL ALIGN=2
1 INIT . . . . . . . 000002 DATA REL ALIGN=2
2 CODE . . . . . . . 000013 CODE REL ALIGN=1

NO SECTION-NAME SIZE ATTRIBUTES

0O DATA . . . . . . . . 0002 DATA REL ALIGN=1
1 CODE . . . . . . . . 0020 CODE REL ALIGN=1

The initial value area DCONST and variable
area INIT are output.

The variable area DATA is output.

Because code is generated for assigning the
value in the function, the size of the code area
increases.




2.4 Variables Declared as "static" and Their Variable Area

2.4 Variables Declared as "static" and Their Variable Area

This section briefly describes variables declared as "static" and the variable area they
require. Variables declared as "static" are only one type of variables that are allocated
statically.

For a variable declared as "static", area in RAM is allocated for the variable statically.
The scope of variables declared as "static" depends on where they are defined. A
variable that is defined outside a function is referred to as a static global variable. A
variable that is defined inside a function is referred to as a static local variable. Even if
the module or function where the variables are defined terminates, the values are
retained in the variable area within RAM.

m Variables Declared as "static" and Their Variable Area

Whether a variable is dynamically or statically allocated depends on where it is defined. Area
for external variables is allocated in RAM if the variable has been defined outside a function.
Because the area is always present in RAM, the area can be accessed from the entire module.

For a variable declared as "static", area in RAM is allocated for the variable statically. However,
as shown in Figure 2.4-1 "Scope of Variables Declared as "static"™, the scope of the variable
depends on where it is defined. A variable that is defined outside a function is referred to as a
static global variable. A variable that is defined within a function is referred to as a static local
variable. Static global and static local variables are output to the same section for external
variables.
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Figure 2.4-1 Scope of Variables Declared as "static"

extern int main(void); )\ extern int null (void); A
extern int inittime(void);

extern int init(int); extern int currpid;

. extern int semno;
extern int numproc; Can only be accessed from within extern int nextsem;
the module in this source file.
int currpid; Cannot be accessed from other int numproc = 100;
int semno; modules. T, o5

int nextsem = 0;

Area is allocated in RAM. jstatic int nextproc = 50; Siafic global variable

Static global variable | } ‘{’Oid start (void)

int pid = 0;

int null (void)
{

int userpid = 10;

if (null() > 0)
pid++;
[

°

inittime();

currpid = init(userpid);
nextsemt+;

[}
semno = 100; }
return (semno) ;
}
Pint init(int pid) H /

! istatic int num = 50; Staticlocal variable] : : . .
i g Different variables

int j; Valid inside this function. Different areas are allocated for these variables.

: Area is allocated in RAM.

return (num--) ;

Section 2.4.1 "Example of Function with Static Global Variable" provides an example of a
function that uses a static global variable. Section 2.4.2 "Example of a Function with a Static

Local Variable" provides an example of a function that uses a static local variable.

The scope of a variable declared as "static" depends on where the variable is defined. Even if
the module or function where the variable is defined terminates, the value is retained in the

variable area in RAM.

The advantage of using a variable defined as a static local variable in a function as a counter
variable for the number of times the function is called is that the value will be retained. On the
other hand, if a variable declared as "static" is used for a task where the value need not be
retained, RAM area will be used inefficiently. Define a static variable only after carefully

investigating whether this is necessary.

[Tip]
Softune C Checker:

The Softune C Checker outputs a warning for variables that have been declared as "static" in
the analyzed module, but have not been accessed at all. Accordingly, carefully check the

scope of variables and define variables as static variables only when necessary.

In addition, for Variables declared as "static" for which no initial value has been specified, a
warning requesting that the variables be initialized will be output. If necessary, specify an

initial value.
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2.4 Variables Declared as "static" and Their Variable Area

Example of Function with Static Global Variable

Figure 2.4-2 "Example of a Function that has a Static Global Variable" shows an
example of a function that has a static global variable. The variable count, which is

declared as "static" outside the function, is a static global variable.

m Example of a Function with Static Global Variable

Area for the static global variable count is allocated via the variable LI_1, which is not declared
as PUBLIC. RAM area is therefore allocated for the variable count and the value retained.
Note, however, that this variable cannot be accessed from other compile units.

Figure 2.4-2 Example of a Function with Static Global Variable

) ) Static global variable
int time;

static int count = 0;

© o O WING

int timeint (void);
int list3(void)

{
int flag = 0;

if (++count >= 60)\
flag = timeint () ;

return (flag);
}

int timeint (void)
{

int temp;

if (!--time) {
time = 10;

count -= 60;

return (temp) ;

Area for the global variable time is allocated as an area

declared as PUBLIC.

.SECTION DATA, DATA, ALIGN=2:

.ALIGN 2
.GLOBAL time
time -
.RES.B 2
.SECTION INIT, DATA, ALIGN=2:
.ALIGN 2 H
LI 1

.RES.H 1

Area for the static global variable count is allocated via the
variable LI_1, which is not declared as PUBLIC. As aresult,
the variable cannot be accessed from other compile units.

} ) i:f\\\\\\
temp = time * coun}_:j_%

NO SECTION-NAME

. . . . 000002 CONST REL ALIGN=2

. . . . 000002 DATA REL ALIGN=2
. . . . 000002 DATA REL ALIGN=2
. . . . 00004D CODE REL ALIGN=1

SIZE ATTRIBUTES

if (++count >= 60)
MOVW A, LI 1
MOVN A, #17
ADDW A
MOVW RWO, A
MOVW A, RWO
MOVW LI 1, A
MOVW A, RWO
CMPW A, #60
BLT L 23

count -= 60;
MOVW A, #60
SUBW LI_1, A
i temp = time * count;
MOVW A, _time
MULUW A, LI_1
MOVW @RW3+-2, A
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2.4.2 Example of aunction with Static Local Variable

Figure 2.4-3 "Example of a Function with Static Local Variable" shows an example of a
function that has a static local variable. The variable count, which is declared as
"static" in the function, is a static local variable.

m Example of a Function with Static Local Variable

Area for the static local variable count defined in function list4( ) is allocated via the variable
LI_1, which is not declared as PUBLIC.

Similarly, area for the static local variable count defined in function timeint( ) is allocated via the
variable LI_2, which also is not declared as PUBLIC. A separate area in RAM is allocated for
each of the static local variables "count" and their values are retained. The scope of these
variables is within the defined function. The variables cannot be accessed from other functions
even within the same compilation unit.

Figure 2.4-3 Example of a Function with Static Local Variable

.SECTION DATA, DATA, ALIGN=2

1 int time; .ALIGN 2
2 .GLOBAL _time
3 int timeint2 (void); _time:
1 .RES.B 2
5 int list4(void) .SECTION INIT, DATA, ALIGN=2
6 { rnsmeggeeeneeeeetBEIGN 2y
7 int flag = 0; Static local variable (LI_2: N )
8 static int count 0; ﬂALI [
II%
’ S .RES.H 1

Area for the static local variable count of function list4( ) is

return (flag); allocated via the variable LI_1, which is not declared as PUBLIC.

24

13 } Area for the static local variable count of function timeint2( ) is
14 allocated via the variable LI_2, which is not declared as PUBLIC.
15 int timeint2 (void)
16 { \ if (++count >= 60)
. . ) i _
17 int temp; Static local variable MOV Au LT 1
’

18 static int count = 1000; 4 MOVN A, #17
19 ADDW A
20 1f(1--time) { MOV RWO, A
21 . MOVW A, RWO

MOVW LI_1, A
22 MOVW A, RWO
23 CMPW A, #60
24 BLT L 23
25
26 count -= 60;

MOVW A, #60

SUBW LI_2, A

NO SECTION-NAME SIZE ATTRIBUTES

0 DCONST . . . . . . 000004 CONST  REL ALIGN=2 temp = time * count;
1 DATA . . . . . . . 000002 DATA REL ALIGN=2 MOVW A, _time
2 INIT . . . . . . . 000004 DATA REL ALIGN=2 MULUW A, LI_2
3 CODE . . . . . . . 00004D CODE REL ALIGN=1 MOVW QRW3+-2, A




CHAPTER 3 READ-ONLY VARIABLES AND THEIR
VARIABLE AREA

This chapter describes how to use read-only variables.

A value is read or written for a variable at execution. Therefore, the variable areas are

mapped into RAM areas, which can be read and written. However, there are variables

that are at execution only read and do not need to be changed. Examples for this type

of variable are messages, such as opening or error messages. Mapping variables that
are read-only in RAM areas in the same way as normal external variables has the result
that these RAM areas are only read at execution. As a result, valuable RAM space will

be wasted. This chapter describes two methods for reducing the required areas within
RAM.

3.1 "Numeric Constants and #define Definition"

3.2 "Defining Variables Using the const Type Qualifier"
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3.1 Numeric Constants and #define Definition

This section describes how to use the #define definition to define read-only variables
as numeric constants.
Because this method does not allocate variable areas, RAM area usage can be

reduced.

m  Numeric Constants and #define Definition

26

Figure 3.1-1 "Defining External Variables and Defining Variables Using the #define Statement”
shows an example of defining read-only variables as initialized external variables and using the
#define statement to define the read-only variables as numeric constants in a macro definition.

See function list5( ) of (1), "External variable definitions," in Figure 3.1-1 "Defining External
Variables and Defining Variables Using the #define Statement". Because initialized variables
have been defined for function list5( ), the variable area INIT section and initial value area
DCONST section are generated. At linkage, the initial value area DCONST section is mapped
into the ROM area. The variable area INIT section is mapped into the RAM area. The startup
routine transfers the initial value in the ROM area to the RAM area. The following variables are
defined for function list5( ):

» char-type variable (1 byte) c_max

* int-type variable (2 bytes) maxaddr

» float-type variable (4 bytes) pai

» double-type variable (8 bytes) d_data

The variable area INIT is allocated in the RAM area for these variables. Read-only variables
are not written to at execution. From the viewpoint of economical use of the RAM area, this 15-
byte variable area will be wasted.

The value of an external variable is referenced on the basis of the address of the external
variable.

As shown below, the size of the code generated at reference depends on the variable type.
» To reference a char-type (1 byte) variable: 6 bytes

» To reference an int-type (2 bytes) variable: 5 bytes

» To reference a float-type (4 bytes) variable: 7 bytes

» To reference a double-type (8 bytes) variable: 11 bytes

See the function list6( ) of (2), "Defining numeric constants using the #define statement," in
Figure 3.1-1 "Defining External Variables and Defining Variables Using the #define Statement".
Function list6( ) defines ¢_max, maxaddr, pai, and d_data using the macro definition of the
#define statement. The value of the macro-defined numeric constant is embedded in the code,
and a variable area is not generated. Because the code for referencing the external variable is
not generated, the total code length will be relatively short. The execution speed will also be
increased. The code to be generated depends on the numeric constant.

Macro-defined variables have no type. Therefore, type conversion may be performed at
assignment depending on the type of the variable to be assigned. This can lead to unexpected
results.



3.1 Numeric Constants and #define Definition

Figure 3.1-1 Defining External Variables and Defining Variables Using the #define Statement

(1) External variable definitions (2) Defining numeric constants using the #define

statement
1 | char c_max = 250; 1 | #define c_max 250
2 | int maxaddr = 32767; 2 | #define maxaddr 32767
3 float pai = 3.14159; 3 #define pai 3.14159
4 [ double d data = Ox££££0000; 4 | #define d_data OxEff£0000
5 5
6 void list5(void) 6 void list6 (void)
71 7
8 char c_data; 8 char c_data;
9 int i_data; 9 int i_data;
10 float f_data; o const. o 10 float f data;
11 double 1_data; e s A 11 double 1_data;
12 %+ a129922000000000 L2,
13 feldata F e maxy Ul s 13 ic_data = c_max;
14 i _data = maxaddr; 2 a0as0em0 14 ti data = maxaddr;
15 i f_data = pai 15 {f _data = pai;
16 "1 data = d _data; & DETA. 16 i1 data = d_data;
17 fy T T ‘DaTalB AR Sl S
. ¢ data = ¢ max; c_data = c_max;
MoV A, c max y INIT, DATA, ALICN-2 MOV @RW3+-15, #250
o 2 = axa .
MOV @RW3+-15, A 4 data 1-7data maxaddr;
i data = maxaddr; d_data: - MOVW @RW3+-14, #32767
- ’ o 1 a = ai;
MOV A, maxaddr 2 f data = pai;
MOV @RW3+-14, A Tpai MOVL A, #1078530000
—pai MOVL @RW3+-12, A
f data = pai; 1
MOVL a pai 1 _data = d_data;
MOVL @RW3+-12, A [ | _maxaddr: - n;g)v(l;‘ B, #0
1_data - d_data; R . -
MOVEA A, GRW3+-8 _c_max: o MOVL ERW3+-8, A
MOVH A 4 d data 1 MOVL A, #1106247648
MOV RO, 48 MOVL @RW3+-8+4, A
MOVSI DTB, DTB

NO SECTION-NAME SIZE ATTRIBUTES NO SECTION-NAME SIZE ATTRIBUTES

0 DCONST . . . . . 00000F CONST REL ALIGN=2 0 CODE . . . . . . 000022 CODE REL ALIGN=1
1 INIT . . . . . . 00000F DATA REL ALIGN=2
2 CODE . . . . . . 000025 CODE REL ALIGN=1

When the #define statement is used, a variable area is
not generated.

Because the numerical data are embedded in the code,
the size of the code is smaller than when referencing
external variables.

When an initialized global variable is defined, the
variable area INIT and initial value area DCONST
are generated. In addition, the code for referencing
the external variable is generated during reference.

The above results for read-only variables can be summarized as follows:
Defining a variable as an initialized external variable

Variable area is allocated in RAM even though no writing is performed.
Defining a variable as a numeric constant

The variable area is not allocated in RAM.

Since the value is directly embedded in the code, the execution speed is higher than for
using external variables.

Because the type of these values is not clearly defined, unexpected operation results can
occur due to type conversion.

From the viewpoint of economical use of RAM area, it is more efficient to define read-only
variables as numeric constants. As the values of numeric constants are directly accessed,
processing speed will increase. However, if the number of accesses to numeric constants
increases, the size of the generated code generated will increase proportionally to the number
of accesses to numeric constants.

Whether to define read-only variables as normal external variables or as numeric constants
must be decided based on the nature of the program system to be created. For a program
system where the processing speed is more important than the size of the ROM area, it will be
more efficient to use constant values defined using the #define statement.
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3.2 Defining Variables Using the const Type Qualifier

This section describes how to define read-only variables using the "const" type

qualifier.

Because this method directly accesses the initial value areas allocated in ROM, the
size of the RAM area can be reduced.

m Defining Variables Using the "const" Type Qualifier

Figure 3.2-1 "Output Section of a Variable Declared with the const Type Qualifier and Mapping
into Memory" shows the relationship between the section to which a variable is output as a
result of compilation and mapping into memory.

A const type-qualified variable is normally output to the variable area CONST section only. This
CONST section is mapped into the ROM area. When a variable is accessed, the variable area
in the ROM area is accessed directly.

Handling of a const-type qualified variable depends on the hardware, compiler, and memory
model to be used. See Chapter 2 "MAPPING VARIABLES QUALIFIER WITH THE TYPE
QUALIFIER const" for details on mapping a const-type qualified variable.

Figure 3.2-1 Output Section of a Variable Declared with the const Type Qualifier and Mapping into

28

Memory

const-type modified variable
const int c datal=123;

fec907 _
wst optlon

[ CONST| [ CONST

A 4 2

The initial value area

-crgr?sltr-]gslev(?lljuatlaif?erga of the | ROM area ROM area CONST of the const-type

variable is mapped into the CONST CONSTH qualified variable is

ROM area. The ROM mapped into the ROM_

area is accessed when the area. The startup routine

variable is referenced. transfers the value to the
variable area INIT in the

CINIT RAM area. The RAM area

is accessed when the
variable is referenced.

Figure 3.2-2 "Defining External Variables and Defining Variables Using the const Type Qualifier"
shows a function that defines a read-only value as an initialized external variable and a function
that defines the value as variable declared with the const type qualifier.

See function list5( ) of (1), "External variable definitions," in Figure 3.2-2 "Defining External
Variables and Defining Variables Using the const Type Qualifier". Because initialized variables
have been defined for function list5( ), the variable area INIT section and initial value area
DCONST section are generated. At linkage, the DCONST section is mapped into the ROM
area. The INIT section is mapped into the RAM area. The startup routine transfers the initial
value in the ROM area to the RAM area. Function list5() outputs char-type variable ¢c_mayx, int-
type variable maxaddr, float-type variable pai, and double-type variable d_data to the variable
area INIT. Read-only variables are not written to at execution. As a result, this 15-byte variable
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area and the RAM area will not be used economically.

See function list7( ) of (2), "Defining variables declared with the const type qualifier," in Figure
3.2-2 "Defining External Variables and Defining Variables Using the const Type Modifier".
Function list7( ) outputs a variable to the 15-byte variable area CONST section. At linkage, the
CONST section is mapped into the ROM area. Because the ROM area is directly accessed at
accessing, the RAM area can be used economically.

Figure 3.2-2 Defining External Variables and Defining Variables Using the const Type Qualifier

(1) Defining external variables (2) Defining variables declared with the
const type qualifier
1 char c_max = 250; 1 const char c_max = 2507
2 int maxaddr = 32767; 2 const int maxaddr = 32767;
3 float pai = 3.14159; 3 const float pai = 3.14159;
4 double d data = 0xffff0000; 4 const double d data = 0xffff0000;
5 5 —
6 void list5 (void) .SECTION DCONST, CONST, ALIGN=2 6 void list7 (void) .SECTION CONST, CONST, ALIGN=2
7 { LALIGN 2 7 ( 2
8 char c data; .FDATA.D  H'41EFFFE000000000 8 char ¢ data: _d_data
9 int i data; aLTON 2 9 int i data; D H'41EFFFE000000000
10 float f data; (EDATR.S - HTE0490ED0 10 float f data; 2
11 double 1 data; v 11 double 1_data; pai: e
12 DATA.B 250 12 - _FDATA.S H'40490FDO
13 : 13 [TeTdatE e max »
14 | i data 14 | i_data = maxaddr;} -GLOBAL _maxaddr
15 15 i f_data = pai; ATA.H 3276
16 16 i1 data = ddata; (| . OOPR e
17 ) 17} \ -7 loata.B 250
i c_data = c_max; N
MOV A, c max ‘_ ( ;NIT, DATA, ALIGN=2 ;;;\ cidata - cimax;
MOV @RW3+-15, A K d_data MOV A, _c_max
; i data = maxaddr; ~d_data: | MOV @RW3+-15, A
MOVW A, _maxaddr 2 Piii i_data = maxaddr;
MOVIH @RW3+-14, A pai: pai MOV A, _maxaddr
f data = pai; N 1 MOV @RW3+-14, A
MOVL A, pai f—— £ data = pai;
MOVL @RW3+-12, A _maxaddr: o | MOVL A, pai
1 data = d_data; {GLoBar “c_max MOVL @RW3+-12, A
MOVEA A, GRW3+-8 © max: - | Piii 1 data = d_data;
MOVH A, # d data e MOVEA A, GRW3+-8
MOV RWO, #8 MOV A, # d data
MOVST DTB, DTB MOVW RWO, #8
MOVSI DTB, DTB
NO SECTION-NAME SIZE ATTRIBUTES NO SECTION-NAME SIZE ATTRIBUTES
0 DCONST . . . . . 00000F CONST REL ALIGN=2
1 INIT . . . . . . 00000F DATA REL ALIGN=2 0 CONST . . . . . 00000F CONST  REL ALIGN=2
2 CODE . . . . . . 000025 CODE REL ALIGN=1 1 CODE . . . . . . 000025 CODE REL ALIGN=1
When an initialized global variable is defined, the When a variable declared with the const type
variable area INIT and initial value area DCONST qualifier is defined, the variable area CONST is
are generated. In addition, the code for referencing generated. In addition, code for accessing the
the external variable is generated during reference. external variable is generated.
(Tip]

Softune C Checker:
The Softune C Checker outputs a warning in the following cases:
« Avariable has been declared with multiple const type qualifiers.

« A variable declared with the const type qualifier has been defined, but no initial value has
been set.

« An attempt was made to change the value of a variable declared with the const type
qualifier.

Use this for reference when defining variable declared with the const type qualifier.
Softune C Analyzer:

Among the external variables of an analyzed program, the Softune C Analyzer displays
variables whose values are not changed by the program as candidates for declaration as
"const." This is helpful for determining which variables to declare with the "const" type
qualifier.
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CHAPTER 4 USING AUTOMATIC VARIABLES TO
REDUCE THE VARIABLE AREA

This chapter describes how to reduce variable areas using "automatic” variables.
For automatic variables, the variable areas are allocated on the stack when the
function is called. The variable areas are deallocated at the termination of the
function. Variables that are referenced only from within the function are defined as
automatic variables to reduce the variable areas.

4.1 "Automatic Variables and Statically Allocated Variables"

4.2 "Using Automatic Variables"

31



CHAPTER 4 USING AUTOMATIC VARIABLES TO REDUCE THE VARIABLE AREA

4.1 Automatic Variables and Statically Allocated Variables

This section explains which variables are allocated as automatic variables and which

are statically allocated.

As shown in Figure 4.1-1 "Automatic Variables and Status of Variable Areas on the
Stack"”, an automatic variable is a variable that has been defined in a function. When
the function is called, variable area is allocated in the stack for the automatic variable.

The allocated variable area is released when the function terminates.

m Variable Areas of Automatic Variables

32

Because variable area is allocated for automatic variables dynamically, automatic variables are
also referred to as a dynamically allocated variables. Automatic variables can be referenced

only from within a function.

The position on the stack where the Automatic Variable area is allocated depends on the status
The Automatic Variables are not initialized at allocation.
Therefore, if a variable defined as an automatic variable is used without being initialized, the

of the variable at function call.

value of the variable will be unpredictable.

Figure 4.1-1 Automatic Variables and Status of Variable Areas on the Stack

h'xxxx

extern int init (int);
extern void start(int, int);

int userpid = 100;

void main(void)
{

int 1,3;

i = init (userpid--);
.
.

.
start (userpid,i);
.

1

™N

Automatic Variable
defined in init( )

higt
Argument for
Userpid 4 function init( )
Return addres:
PrEV\DIiJS RW3 RW3
Text
prev sp

low

Status of stack at start of function init( )

/ int
{

high
%

low

0
Status of stack at end of )

init (int pid)

int prev;
int next;
int 1i;

prev -= pid;

next += pid;

i = pid * 2
.

return (++next) ;

<« SP
function init( )




4.1 Automatic Variables and Statically Allocated Variables

m  Statically Allocated Variables and Variable Areas in RAM

As shown in Figure 4.1-2 "Statically Allocated Variables and Variable Areas in RAM", variable
areas are allocated in the RAM area for statically allocated variables. The areas of the statically
allocated variables are always located in the RAM area. External variables defined outside a
function and variables declared as "static" are the statically allocated variables. External
variables can be accessed from everywhere in the program. Variables declared as "static" can
be classified into static local variables and static global variables depending on the location of
their definition. The scope of the two types of variable differs.

Figure 4.1-2 Statically Allocated Variables and Variable Areas in RAM

Fixed variable areas are allocated in RAM.
The values can be read and written from
int currpid; all functions.
int nextproc;
int semcont; Definitions of
int currsem; external variables ( -
. currpid
int nextsem; Nextproc
semcont
int semno = 10; Ex&ynal{ currsem
variable nextsem
extern void initproc (void) ; areas .
. . . . [ ]
extern int initsem (int) ; °
extern int wait(int); \ Semno
[ ]
void main (void) L]
{
int userpid = 10;
int a;
initproc ( );
a = initsem (userpid) ;
°
[ ]
[ ]
[ ]
}
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m Definition and Scope of Automatic Variables and Statically Allocated Variables

34

Figure 4.1-3 "Definitions and Scope of Automatic Variables and of Statically Allocated
Variables" shows scope and definitions of automatic variables and statically allocated variables.

Statically allocated variables can be divided into initialized variables and uninitialized variables.
As described above, initial value area is allocated in the ROM area and variable area is
allocated in the RAM area for an initialized variable. For an uninitialized variable, variable area
is allocated in the RAM area. These statically allocated variables are initialized to their initial

values or to 0 before control is passed to the C program.

Figure 4.1-3 Definitions and Scope of Automatic Variables and of Statically Allocated Variables

C source program

o W N R

0 J o

extern int main(void) ;
extern int inittime (void);
extern int init(int);

extern int numproc;

int currpid;
int semno;
int nextsem = 0;

int null (void) A
RO S
i int userpid = 10; Local variable defined D
..................................... infunctionnull() 1 i
inittime () ;
currpid = init (userpid); chpgl of automatlci
nextsem++; varianies :
semno = 100;
return (semno) ;
] Yo
“int init(int piq) 77 )
RO R
: static int num = 50;
int i = 0;
int j; Local variable defined in function init( )
. Scope of automatic
return (num--) ; variables
}

{1 nextproc

Scope of static
global variable

[Tip]

Softune C Checker:

The Softune C Checker outputs the following warnings for automatic variables:

* An automatic variable is not used

« An automatic variable is accessed without specifying a value

Softune C Analyzer:

The Softune C Analyzer lists the analysis results and the access status of external variables.
This list can be used to check from which function a defined external variable is accessed.
Variables that are only accessed by a defined module can also be identified from these

results.




4.2

4.2 Using Automatic Variables

Using Automatic Variables

This section describes the merits of using automatic variables.
Reducing the number of external variables and using automatic variables that can only
be locally accessed within a function can result in more economical use of the variable

area.

m External Variables and Automatic Variables

External variables can be divided into external variables declared as "const" and those that are
not. Area for external variables that are not declared with the const type qualifier is allocated in
RAM. However, careful review of the created program will often find that variables that are
accessed only within a specific function have nevertheless been defined as external variables.
Defining a variable whose usage range is restricted as external variable will increase the size of
the variable area. Reducing the number of external variables and using automatic variables,
which can be accessed only from within a function, can result in more economical use of the
variable area.

As shown in Figure 1.3-1 "Dynamically Allocated Variables", and Figure 4.1-1 "Automatic
Variables and Status of Variable Areas on the Stack”, area for an automatic variable is allocated
on the stack when a function is executed. The area is released when the function terminates.
Compared with defining an external variable for each module, this enables more economic use
of the variable area. However, if function calls are deeply nested, the amount of variable area
allocated on the stack will increase. Figure 4.2-1 "Nesting of Function Calls and Stack States"
shows nesting of function calls and the respective stack states.

Figure 4.2-1 Nesting of Function Calls and Stack States

high
A ,
h'xxxx [__userpid high
Return address|
extern in.t init (inF) P Automatic p'CV‘UIUS RWS haaaa| i |
extern void start(int, int); variable T I pd |
defined in e
int userpid = 100; }‘Hirg(cgion — SP
h"aaaa low
void main(void) éuft_omat_ic variable
efined in
o ) Status of stack at start of function start( )
int i,3; function init( )
i = init (userpid--); int init (int pid)
o o low )
o int prev; Status of stack at start of function start( )
° int next;
( int i; void start(int pid, int count)
{
int dummy;
high prev -= pid; high int moji [5];
2 sp next += pid; A y )
h'XXxXx i = pid * 2; <« moji[0] = pid;
. h'dhaa SP .
L]
. V
. ) /] )
start(pid, 1i);
.
.
|gw return (++next) ;
Status of stack at termination )
of function init() '
low
Status of stack at termination
of function start( )

Figure 4.2-2 "Using External Variables and Automatic Variables" shows an example for defining
a variable that is accessed only from within a function as an external variable and an example of
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defining the variable as a automatic variable.

Figure 4.2-2 Using External Variables and Automatic Variables

(1) Function that uses an external variable (2) Function that uses an automatic variable
1 #define MAXPROC 100 1 #define MAXPROC 100
2 #define ERR 1 2 #define ERR 1
3 3
4 int procno; 4 int procno;
5 5 int currproc;
6 [
7 7 int list9(void)
8 int list8(void) 8
9 { 9

10 f ((MAXPROC - procno) >= 0) { 10
11 procno++; 11

14 . 14

15 else 15 t

16 return (ERR) ; 16 else

17} 17 return (ERR) ;

l 18}

nextproc = currproc + 1; 0 i next = currproc + 1;
MO A,_currproc A,_currproc
A, #1 A, #1
A a

@RW3+-2, A
return (next) ;

MOVW _nextproc, A
returniextproc) ;

44 1_23:

NO SECTION-NAME SIZE ATTRIBUTES NO SECTION-NAME SIZE ATTRIBUTES
0 DATA . . . . . . . . 000006 DATA REL ALIGN=2 0 DATA . . . . . . . . 000004 DATA REL ALIGN=2
1 CODE . . . . . . . . 000022 CODE REL ALIGN=1 1 CODE . . . . . . . . 000020 CODE REL ALIGN=1
Variable nextproc is defined as an external variable. The variable "next" is defined as an automatic
The allocated variable area increased by 2 bytes. variable. A variable area is allocated on the stack
The code for variable area access is greater than at executionand released when the function
the one generated for stack access. terminates.

See function list8( ) of (1), "Function using an external variable" in Figure 4.2-2 "Using External
Variables and Automatic Variables". Because the variable nextproc is defined as an external
variable for the function list8( ), the variable area allocated in RAM increased by 2 bytes. An
external variable is accessed based on the variable address. Therefore, the resulting code is
larger than the code for stack access.

See function list9( ) of (2), " Function that uses an automatic variable," in Figure 4.2-2 "Using
External Variables and Automatic Variables". Function list9( ) defines the variable "next" as an
automatic variable and allocates the variable area on the stack at function execution. The
automatic variable allocated on the stack is accessed through the frame pointer (RW3).
Therefore, the resulting code is smaller than the code for external variable access based on the
address. In addition, the RAM area can be used more economically because the area is
released when the function terminates.

In the example shown in Figure 4.2-2 "Using External Variables and Automatic Variables", the
difference in the sizes of the data area is only 2 bytes for the external variable nextproc. The
difference in the code generated for variable access is also 2 bytes. It can be expected that the
size of the generated code will increase with the number of accesses to the external variable.

The amount of variable area that can be saved by reducing the number of external variables by
one will only be a few bytes. However, it can be assumed that there are several dozens or
several hundreds of modules. Therefore, reducing the number of wasteful external variables in
each module can economize on the variable area.

In this way, defining variables that are accessed only within specific functions as external
variables will result in wasteful use of the RAM and ROM areas. Therefore, by keeping the
definitions of external variables to a minimum can economize on the variable area.

Similar to external variables, it is also important to keep the definitions of static variables to the
minimum number required.

When designing the system, carefully investigate the scope of the variables to be defined to
avoid meaningless definitions.



4.2 Using Automatic Variables

[Tip]
Softune C Analyzer:

The Softune C Analyzer lists the analysis results and the access status of external variables.
This list can be used to determine from which function a defined external variable is
accessed. Variables that are only accessed by a defined module can also be identified from
these results.

The Softune C Analyzer checks for function calls that use large amounts of the stack in the
program system based on the amount of stack use calculated by the fcc907. The Softune C
Analyzer then visually displays the routes and amounts of usage. This information is useful
for reducing the amount of stack usage.
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CHAPTER 5 ACCESSING VARIABLES THAT USE BIT
FIELDS

This chapter describes how to access variables that use bit fields.
Using a bit field enables accessing each bit in a byte to be accessed.

5.1 "Boundary Alignment of fcc907"
5.2 "Bit Field Definitions and Boundary Alignment"
5.3 "Accessing I/O Areas Using Bit Fields and Unions"
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5.1 Boundary Alignment of fcc907

This section briefly describes the boundary alignment of the fcc907.
For the fcc907 processing, variables are allocated to memory in accordance with the
variable allocation size and boundary alignment.

m Boundary Alignment of fcc907

Table 5.1-1 "Boundary Alignment of fcc907" lists the relationship between fcc907 variable types,
allocation size, and boundary alignment.

In the fcc907 maps variables in memory based on allocation size and boundary alignment.
When an odd number of char-type variables is defined, the subsequent 2- or 4-byte variable is
mapped to an odd address. Unused areas are not generated. However, accessing a 2- or 4-
byte variable that was mapped to an odd address may take longer than accessing a 2- or 4-byte
variable that was mapped to even address. Care must be taken when variables of the type char
are defined in array elements or members of a structure.

Table 5.1-1 Boundary Alignment of fcc907

Variable type Allocation size (bytes) Boundary(&l/i[ger;;nent
char 1 1
signed char 1 1
unsigned char 1 1
short 2 2
unsigned short 2 2
int 2 2
unsigned int 2 2
long 4 2
unsigned long 4 2
float 4 2
double 8 2
long double 8 2
near Pointer/address 2 2
for Pointer/address 4 2
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5.2 Bit Field Definitions and Boundary Alignment

This section describes bit field definitions and boundary alignment for memory
allocation.

Bit fields allow accessing each bit within a byte. However, depending on the boundary
alignment conditions, it may not be possible to access some areas.

m Bit Field Definitions and Boundary Alignment

Bit fields allow to access each bit within a byte.

Figure 5.2-1 "Bit Field Allocation 1 for the F2MC-16 Family" shows the bit field assignment for
the fcc907.

Figure 5.2-1 Bit Field Allocation 1 for the F 2MC-16 Family

struct tagl { 15 8|7 0
int A:10;
ine 513/ L[ ¢[]e]]

: int C:2; MSB LSB

Continuous bit field data of the same type is
stored starting from the LSB up to the MSB.

struct tag2 { 15 8i7 0

int A:12; B
int B:5;
}
jl The bit exceeds
0

the boundary.
15 817

Free =——p

B

When a bit field is to be allocated across a type
boundary, the field will be allocated starting from
the boundary appropriate to the type.

As shown in Figure 5.2-1 "Bit Field Allocation 1 for the F2MC-16 Family", the fcc907 allocates
contiguous bit field data starting from the least significant bit (LSB) regardless of the type.

When a bit field is to be allocated over a type boundary, the field is allocated starting from a
boundary that is appropriate for the type.

Figure 5.2-1 "Bit Field Allocation 1 for the F°MC-16 Family" shows an example of bit field
allocation with boundary alignment for structure tag2. In this example, int-type 12-bit bit field A
is first allocated in memory. An attempt is then made to allocate int-type 5-bit bit field B. If one
bit lies off the boundary, the boundary alignment operates so that B is mapped starting from a
boundary appropriate to the type "int." In the process, an empty space of four bits is generated.

m Bit Fields of Bit Field Length O

When a bit field of length 0 is defined, the next field is forcibly allocated starting with the next
storage unit.

Figure 5.2-2 "Bit Field Allocation 2 for the F2MC-16 Family" shows an example of allocation of a
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bit field of length 0. In this example, an int-type 5-bit bit field A is first allocated in memory.
Next, a 5-bit int-type bit field B is allocated. Then, a 6-bit int-type bit field C is to be allocated.
However, a bit field of length 0 has been defined before bit field C. As a result, the C area is
allocated after empty space up to the next storage unit is forcibly allocated. Because the int-
type boundary alignment is made in units of one byte, a 6-bit free area is generated.

Figure 5.2-2 Bit Field Allocation 2 for the F 2MC-16 Family

struct tag3 { 15 8! 7 0
int A:5; C B A
int B:5;
int :0;
int c:6;
> L L
15 817 0
Free > B A
€

When a bit field of length 0 is defined, the next bit field is allocated
forcibly starting from the next storage unit.

m Definitions of Bit Fields of Different Types

Continuous bit fields of the same type are stored from the least significant bit (LSB) up to the
most significant bit (MSB). When a bit field of a type that differs from that of the preceding bit
field is defined, the new bit field is forcibly allocated starting with the next storage unit.

Figure 5.2-3 "Bit Field Allocation 3 for the F2MC-16 Family" shows an example of allocation
when different type bit fields are defined. In this example, int-type 2-bit bit field A and then an
int-type 6-bit bit field are allocated in memory before a char-type 4-bit bit field is defined. Even
though the types are different, no free areas are generated because the bit fields are allocated
precisely on the boundaries. Int-type 10-bit bit field D is then defined. Because the type is
different, the D area is allocated after free empty space up to the next storage unit is allocated.
Finally, because a bit field of length 0 has been defined, int-type bit field F is allocated starting
from the next storage unit.

Figure 5.2-3 Bit Field Allocation 3 for the F °MC-16 Family

15 817 0

struct tagd { C B
int A:2; I I
int B:6; D
charC:4;
int d:10;
int 0;
int £:2; Free

Continuous bit field data of the same type is stored
starting from the LSB up to the MSB. When a bit
field of a different type is defined, the bit field is
allocated from the next storage unit.
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m  Signed Bit Fields
When a signed bit field is defined, the highest order bit of the bit field is used as the sign bit.
When a signed 1-bit bit field is defined, the bit field consists of only the sign bit.

Figure 5.2-4 "Definitions of Signed Bit Fields" shows an example of a definition of signed bit
fields. In this example, 1-bit bit field A is defined as a signed bit field. If s_data.A=1 is assigned
before checking for s_data.A = =1, the obtained result will be false.

Figure 5.2-4 Definitions of Signed Bit Fields

When a signed bit field is defined, the highest order bit of the bit field is used as the sign bit.

struct tagd {

signed int A:1
unsigned int B:1 15 8 7 0
signed int C:5 T—T T 1 T
signea  inc oo | Free—t [ LT[ [ | [J€]|B
}s_data; N
MSB LSB
void main(void) ) .
{ Sign bits
int f1 1; . N e £
int flaa When a signed 1-bit bit field
is defined, the bit field consists
s_data.A = 1; of only the sign bit.
s_data.B = 1;
if(s_data.A == 1)

flag 1 = 10;

When 1 is assigned to signed bit field s_data.A and
then s_data.A = =1 is checked, the result is false.

[~~~ When 1 is assigned to unsigned bit field s_data.B and
then s_data.B = =1 is checked, the result is true.

[Tip]
Softune C Checker:

The Softune C Checker outputs a warning message for structure variables or union variables
in which a free field occurs. If a warning message is output, check the definitions of the
structures and unions again.
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5.3 Accessing I/O Areas Using Bit Fields and Unions

This section describes how to access bit fields in bit units and entire bit fields of

unions. This method is not directly related to using less RAM area, but it can facilitate

access to registers mapped into the I/O area.

m  Accessing I/O Areas Using Bit Fields and Unions

44

If a structure is defined as a bit field, each field can be accessed or assigned individually, but
the entire structure cannot be accessed as such. Moreover, data cannot be assigned to the
entire structure in a batch operation. Defining the structure as a union as shown in Figure 5.3-1
"Accessing the 1/0 Area with Bit Fields and Unions" enables to access both the values of
individual bits or the entire structure. In this example, bit field structures and variables of the
type "unsigned short" are defined as unions. Therefore, data can be accessed either bit units or
as variables of the type "unsigned short."

Figure 5.3-1 Accessing the I/0O Area with Bit Fields and Unions

/* 1/0 Area Address */

#ifdef I0_DEFINE

unsigned short word; #pragma section IO=IO_REG, locate=0x000000

struct { #endif
unsigned short TRG
unsigned short CNTE:
unsigned short UF
unsigned short INTE:
unsigned short RELD:
unsigned short OUTL:
unsigned short OUTE :
unsigned short MOD
unsigned short CSL
unsigned short

union io_tmcsr {

IO_EXTERN io union io_pdr0 IO _PDRO;
°

.
.

__IO_EXTERN __io union io_tmesr IO_TMCSRO;
I0_EXTERN __io unsigned short IO_TMRO;
IO_EXTERN __io union io_tmcsr IO_TMCSRL;

__ IO _EXTERN __io unsigned short IO_TMR1;

.
.
.

BN W PR e

} bit;

A value is assigned for the entire IO_TMCSRO as an unsigned short type variable.

I0_TMCSRO = 0x081b;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
word
| |Free | |CLR1|CLRO‘MODZ‘MODllMODO‘CUTEIOUTLIRELOI INTE I UF ‘CNTEITRG

One is set for bit field UF.

10_TMCSR.bit.UF = 0x01,

The values of the hardware registers that are allocated to the input-output areas of the F2MC-16
family can be referenced in bit units or collectively. When a union is defined for such hardware
registers, a value can be assigned in the manner shown below.

IO_TMCSRO.word = 0x081b;

A value can also be directly assigned to a bit field as shown below.

IO_TMCSRO.bit.UF = 0x01,

This approach facilitates access to registers mapped into the 1/O area.



PART Il USING STACK AREA EFFICIENTLY

Part Il describes how to use stack areas efficiently in C programs.
Part Il first briefly describes the states of the stack areas at a function call. It then
describes how to use the stack areas efficiently.

CHAPTER 6 "FUNCTION CALLS AND THE STACK"

CHAPTER 7 "REDUCING FUNCTION CALLS BY EXPANDING FUNCTIONS
IN LINE"

CHAPTER 8 "REDUCING ARGUMENTS TO CONSERVE STACK AREA"

CHAPTER 9 "CONSERVING STACK AREA BY IMPROVEMENTS ON THE
AREA FOR FUNCTION RETURN VALUES"
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CHAPTER 6  FUNCTION CALLS AND THE STACK

Before describing how to use the stack area effectively, this chapter describes the
areas that are allocated on the stack when a function is called.

When a function is called, areas, such as the areas for arguments, are allocated on the
stack as necessary.

6.1 "Areas Allocated on the Stack during Function Calls"

6.2 "Stack States When Function Calls Are Nested"
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6.1 Areas Allocated on the Stack during Function Calls

When a C program calls a function, a return address storage area and a previous frame
pointer (RW3) save area are always allocated on the stack.

m  Areas Allocated on the Stack at Function Call
When a C program calls a function, the following areas are allocated on the stack as shown in
Figure 6.1-1 "Areas Allocated on the Stack when a Function is Called":
O Actual argument and dummy argument areas
Used to hand over arguments during function calls.
» Actual argument: Argument specified by the calling function

» Dummy argument: Argument accessed by the called function

O Return address save area
Used to store the address for returning to the calling function.

This area is acquired or released by the calling function.

O Previous frame pointer save area

Used to save the value of the frame pointer (RW3 register) of the source calling the function.

O Local variable area
Used to store local variables or work variables.
This area is allocated at function entry, and released at function exit.
The size of this area depends on the humber of the local variables to be stored. The greater the
number of variables defined in the function, the larger the area allocated.
O Register save area
This area is used to save registers that must be preserved for the calling source.

This area is not allocated when no registers need to be saved.

0 Return address value save area

This area is used to save the leading address of the area used to store the return value of
functions that return double type, long double type, structure type, or union type value.
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6.1 Areas Allocated on the Stack during Function Calls

Figure 6.1-1 Areas Allocated on the Stack When a Function Is Called

high

Return value area

Dummy area for
arguments

Return address
save area

Previous RW3 register area

<«— RW3
Local variable area

Register save area

Return value address
save area

Actual area for
arguments

«— SP

low

Out of the areas shown in Figure 6.1-1 "Areas Allocated on the Stack When a Function Is
Called", the return address storage area and old frame pointer save area are always allocated
at function call. Other areas are allocated depending on the defined function. The greater the
number of arguments to be passed to the function and number of local variables to be defined in
the function, the larger the areas allocated on the stack.
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CHAPTER 6 FUNCTION CALLS AND THE STACK

6.2 Stack States When Function Calls Are Nested

The areas allocated on the stack for a function are released when the function
terminates. The deeper the nesting of function calls nesting, the greater is the amount
of stack used.

m Stack States When Function Calls Are Nested
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Figure 6.2-1 "Nesting of Function Calls" shows the stack states for nested function calls. The
areas allocated on the stack are released when the function terminates. However, releasing
stack areas is not sufficient to guarantee that the stack is used efficiently. If function calls are
deeply nested, new areas will be allocated above the previously allocated areas. As a result,
the used stack areas will increase by that amount.

The best method for reducing used stack space is to avoid function calls. However, this is
impractical because this would mean that one program system would have to consist of a single
function only. Of the areas described above, the return address and old frame pointer areas are
always allocated when a function is called. The other areas depend on the called function.
Therefore, stack use can be minimized if both the number of function calls and the areas
allocated on the stack when a function is called are reduced.

Figure 6.2-1 Nesting of Function Calls

high high
h’ * f
extern int init (int); XXX [ userpr h'
= aaaa |
. . . turn address,
extern void start(int, int); pi
Auto  Previous RWS3 | Return address|
. N variables ] Previous RW3
int userpid = 100; o next
of init( ) umm
. . Lo sp Auto o
void main(void) h'aaaa ¥ variables | [_moj[3] ]
o o low o of start() | |=nt[2]
int 1,3 Stack status when function init( ) starts T e
i = init (userpid--); int init (int pid) |
. ( ow
. int prev; Stack status when function start( ) starts
° int next;
¢ int i; void start(int pid, int count)
{
int dummy;
high prev -= pid; int moji [5];

LSP next += pid;
i = pid * 2;
°
.

h'xxxx mO]l[O.] = pid;

4 )

start(pid, 1i);
L]
L]

* return (++next) ;
low )

Stack status when function v

init( ) terminates low
Stack status when start( )
terminates




CHAPTER 7 REDUCING FUNCTION CALLS BY
EXPANDING FUNCTIONS IN LINE

This chapter describes how to use inline expansion of functions to reduce function
calls. Expanding functions in line reduces the amount of stack area required.

7.1 "Inline Expansion of Function”

7.2 "Conditions for Inline Expansion of Function”
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CHAPTER 7 REDUCING FUNCTION CALLS BY EXPANDING FUNCTIONS IN LINE

7.1 Inline Expansion of Function

This section gives a simple description of the inline expansion of functions. When a
specified function is called, the function body is directly expanded in line.

m Inline Expansion of Function

The fcc907 uses the following format to specify the inline expansion of functions:

#pragma inline name-of-function-to-be-inline-expanded

The function to be inline-expanded can also be specified using the -x option when starting the
compiler as follows:

-X name-of-function-to-be-inline-expanded

Figure 7.1-1 "Inline Expansion of a Function" shows an example of inline expansion of a
function. The inline expansion is specified with "#pragma inline function-name." When the
specified function is called, it is expanded inline.

Figure 7.1-1 Inline Expansion of a Function

1 extern char block01[10];
2 extern char block02[20];
3
4 int checksum(char *data, int length)
Z ¢ int res, code forthe function body
' is generated because the
; int 1 call is an ordinary call
9 res = 0; .
10 for(i = 0; i < length; i++){ :
11 res += (int)*data;
12 } int proc_block 01 (void)
13 return(res & O0x00ff); {
14 ) int temp;
15
[[16 #pragma inline checksum <— SPeqification ) temp = : Because the inline expansion
17 of inline Inline i is specified, the code of function:
18 int proc_block 01 (void) expansion expansion - checksum( ) is embedded.
19 {
20 int temp;
21 return (temp) ;
22 temp = checksum(block01l, 10); }
23 return (temp) ;
24}
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7.1 Inline Expansion of Function

m  When Inline Expansion Is Not Executed Even Though #pragma Inline Is Specified

Figure 7.1-2 "Example in Which Inline Expansion Is Not Executed" shows an example of when
inline expansion is not executed even though #pragma inline is specified.

In this example, inline expansion of function checksum( ) is specified on line 16. However,
because optimization using the -O option (level greater than-O 1) has not been specified for the
compiler, the usual function checksum(') on line 22 is called.

Figure 7.1-2 Example In Which Inline Expansion Is Not Executed

c ilati ithout Return address
ompilation withou . i
optim’:}zation specification ~ -ocal variable (2 bytes) of _ | Previous RW3
function proc_block01() b temp
R 10

; exter“ C}:‘r Eioctgi[ig]j Area for arguments (4 bytes) at DiockOL

extern char block02(20]; function checksum( ) calling

3 Return address

4 int checksum(char *data, int length) N

5 Prevpus RW3

; . ) i

S ot res; Local variable (4 bytes) of Tos

. int i; function checksum( )

9 res = 0; X
10  for(i = 0; i < length; i++){ Stack status when function
11 res += (int)*data; checksum( ) was called from
12 ) function proc_block01
13 return(res & 0x00ff); Pii: temp = checksum(block01l, 10);
14} MOVN A, #10
15 PUSHW A
[L6 #pragma inline checksum | MOVI A, # block0l
17 PUSHW A
18 int proc_block01 (void) CALL checksum
19 =7 ADDSP  #4
20 int temp; MOVW  @RW3+-2, A
21 = —— — ——

[22 temp = checksum(block01l, 10); gl Even if inline expansion is specified with "#pragma
;3 return (temp) ; inline," inline expansion will not be executed if
4 A . "
! optimization (level greater than-O 1) is not specified
for the compiler.
NO SECTION-NAME SIZE ATTRIBUTES
O CODE . + v v v v v v v v v w u . 000033 CODE REL ALIGN=1
<Notes>

To have the fcc907 execute inline expansion of a function, always specify optimization using
the -O option in addition to specifying inline expansion.

Even though inline expansion is specified using #pragma inline, inline expansion will not be
executed if optimization (level greater than-O 1) is not specified for compilation.

Specifying only the -O option will default to optimization level 2 (-O 2)
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CHAPTER 7 REDUCING FUNCTION CALLS BY EXPANDING FUNCTIONS IN LINE

m  Executing Inline Expansion Using the #pragma inline Specification

54

Figure 7.1-3 "Inline Expansion" shows an example in which #pragma inline expansion is

specified and optimization using the -O option is specified for compilation.

In this example, the inline expansion of function checksum( ) is specified on line 16. Because
optimization using the (-O 4) option is specified for compilation, the function checksum() on line
22 is inline-expanded. Because there may be a normal function call to the function checksum(
), the code of the entire function is also generated. Specifying the inline expansion of a function
reduces the size of stack used compared with using a function call.
function checksum( ) is embedded in the function proc_block01( ), faster processing can be
expected. Because the code of function checksum( ) is inserted into line 22, code larger than

that for the ordinary function call is generated.

Figure 7.1-3 Inline Expansion

Compilation by

Because the code of

specifying "-O 4"
1 extern char block01[10]; : jommm == begin_of_ function
2 extern char block02([20]; - GLOBAL _proc_block0l
3 o{ proc_block0l:
4 int checksum(char *data, int 1ength)|
5 { .SECTION CODE res = 0;
. 3 . %0
6 int res; Also the code of function o RN
7 int i; checksum() that is to be for(i = 0 i < lengths i+6)(
3 inline-expanded is MOVN A, #0
9 res = 0; generated. MOVW Rw; A
’ BRA L
10 for(i = 0; i < length; i++){ 52 -
11 res += (int)*data; ); 14: i res += (int)*data;
12 ) - MOV A, _block0l
13 return(res & 0x00ff); Apou RS, A
14 } . INCW RW4
15 o oV A | P for(i = 0; i < length; i++)(
16 #pragma inline checksum cHEn A € L*M )
17 wom e MOVH A, RWA
18 int proc block01l (void) ZEXT MOVN A, #10
19 { - UNLINK CMPW A
RET BLT L 52
20 int temp; piis return (res & 0x00£f);
21 MOVW A, RWS5
22 temp = checksum(block01l, 10); ) ZEXT
23  return(temp); Because inline expansion is P o phecksum(blockil, 107
24 } specified, the code of function )
checksum( ) is embedded. RET
.END

NO SECTION-NAME
0O CODE . . . v v v « o o « .

SIZE ATTRIBUTES

. . . 00002F CODE

REL ALIGN=1




7.2 Conditions for Inline Expansion of Function

7.2 Conditions for Inline Expansion of Function

This section explains the conditions for inline expansion of a function.
Only the functions that were defined in the same file can be inline-expanded.

m  Conditions for Inline Expansion of Function

When a function is inline-expanded, the code of the function is directly inserted into the line of
the function call. Therefore, inline expansion can be executed only for functions defined in the
same file.

The fcc907 does not generate code if a function declared as "static" is specified for #pragma
inline and optimization (level greater than-O 1) is specified.

Figure 7.2-1 "Inline Expansion of Function Declared as "static*" shows an example in which a
function declared as "static" is specified for #pragma inline and optimization using the (-O 4)
option is specified.

In this example, inline expansion is specified on line 16. Because the function checksum( ) is
declared as "static", the function is not referenced from other modules. Therefore, because
code for function checksum( ) will not be generated, the size of the code will be smaller.
However, if inline expansion is frequently executed, code larger than that for function
checksum( ') can be generated.

Figure 7.2-1 Inline Expansion of Function Declared as "static"

Compilation while

1 extern char block01[10]; SpeCifying "0 4"
2 extern char block02[20]; .SECTION CODE, CODE, ALIGN=1
3 ;=== begin_of_function
4 int checksum(char *data, int length) .GLOBAL _proc_block0l
5 { _proc_block01l:
6 int res; Code for the function '
7 int 1i; checksum(), which is res = 0;
8 to be inline-expanded, MOVN A, #0
isnot generated. MOVW RWS, A
9 res = 0; for(i = 0; i < length; i++){
10 for(i = 0; i < length; i++){ MOVN A, #0
11 res += (int)*data; MOVW RW4, A
12 } BRA L 46
L 44:
13 return(res & 0x00ff); i res += (int)*data;
14 } MOV A, _block0l
15 ADDW RWS, A
16 #pragma inline checksum v IN(;W RW4
17 Piii for(i = 0; i < length; i++){
18 int proc_block01l (void) L_de: ,
ol ) Because inline expansion is Hovn &, R4
o int temp; specified, the code of function i I
checksum( ) is embedded. o
22 temp = checksum(block01, 10); B e s e
return(res & O%00£f) ;
23 return (temp) ; MOV A, RWS
24 } ZEXT
temp = cl ksum(block01, 10);
return (te )i
}
RET
NO SECTION-NAME SIZE ATTRIBUTES .END
0 CODE . . + v v v v v v v v v 000015 CODE REL ALIGN=1
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<Notes>

In the following cases, inline expansion is not executed even if specified:
» Optimization with the "-O option was not specified for compilation.
» Inline expansion was specified for a recursively called function.

» Inline expansion was specified for a function for which a structure or union was specified as
argument.

» Inline expansion was specified for a file in which the setjmp function is called.
» Inline expansion was specified in a file containing the _ _asm statement.
» Arguments between functions do not match.
[Tip]
For the fcc907:

The number of lines of a function to be inline-expanded can be specified with the following
size option for compilation.

-Xxauto size-option

When this option is specified, the functions that are specified with the size option are inline-
expanded in compilation units. When the size option is not specified, functions consisting of
thirty lines or less are inline-expanded. Also in this case, the optimization (-O 1 or more)
must be specified with the "-O" option.

-K ADDSP-option

Specifying the ADDSP option can reduce the overhead for function call processing and
generate high-speed objects that are smaller than usual. However, this option will
collectively release the actual argument areas accumulated on the stack for function calls. If
this option is not specified, the amount of stack used will increase.

Softune C Analyzer:

The upper limit of the number of lines of a function to be inline-expanded can be specified.
When analysis is executed with this option specified, the Softune C Analyzer will list the
functions that are candidates for inline expansion after the analysis is completed. This
function is helpful in determining the functions that will be expanded in line.



CHAPTER 8 REDUCING ARGUMENTS TO CONSERVE
STACK AREA

This chapter describes how to use fewer arguments in function calls as means of

reducing the amount of stack area used.

The best way to conserve the stack is to avoid all function calls, but this is not

practical. CHAPTER 7 "REDUCING FUNCTION CALLS BY EXPANDING FUNCTIONS IN
LINE" already explained described how to use inline expansion to conserve stack area.
However, depending on the function size and processing conditions, it may not be

possible to conserve stack area by inline expansion. This chapter describes a second
method for stack conservation: Conserving stack area by reducing the argument

count.

8.1 "Passing Arguments During Function Calls"

8.2 "Conditions for Structure Address Transfer"
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CHAPTER 8 REDUCING ARGUMENTS TO CONSERVE STACK AREA

8.1

Passing Arguments During Function Calls

This section describes how to pass arguments during function calls.

When a function is called, the fcc907 stacks these arguments and passes them to the
called function. Reducing the number of arguments for function calls conserves stack
area. The following section describes how argumetns are passed at the example of a
variable that is defined as a structure.

m  Argument Passing and Stack Usage Size
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When a function is called, the fcc907 stacks these arguments and passes them to the called
function. The greater the number of arguments, the larger the stack area used. Reducing the
number of arguments for function calls conserves stack area.

The following three methods for passing arguments are explained for variables defined as a
structure:

* Normal Argument Passing

» Argument Structure Passing

» Address Passing of Structures

Figure 8.1-1 "Variable that is Defined as a Structure" shows an example for a variable that is

defined as a structure.

Figure 8.1-1 Variable That Is Defined as a Structure

struct list{ .
int datal; datal Character string

int data2; data2
char *msg;

) *msg opo..--)

Structure type frame declaration




8.1 Passing Arguments During Function Calls

8.1.1 Normal Argument Passing

During normal argument passing, arguments are stored on the stack sequentially
before calling the function. Therefore, the greater the number of arguments, the larger
the stack area used.

m  Normal Argument Passing

Figure 8.1-2 "Normal Argument Passing" shows an example for normal argument passing. In
this example, a 6-byte area for saving three arguments is allocated on the stack. To copy these
arguments on the stack, a 9-byte code is required.

A 28-byte stack area is required for processing from calling function func_subl( ) to its
execution. (See (1), "Normal argument passing," in Figure 8.1-5 "Stack Usage Size Depending
on Argument Type during Function Calls".)

Figure 8.1-2 Normal Argument Passing

To pass three arguments, a 6-byte
area is allocated on the stack.

To copy the arguments on the
stack, a 9-byte code is required.

#define FIRST 20
#define SECOND 40

struct list{

int datal; Piii a=func_subl (code.datal, code.data2, code.msg);
int data2; MOVW A, @RW3+-2
char *msg; PUSHW A
bi MOVW A, Q@RW3+-4
PUSHW A

func_main(void) MOVW A, QRW3+-6

{ PUSHW A
int a; / CALL func subl
struct list code; ADDSP  #6

MOVW  QRW3+-2, A
code.datal=FIRST;
code.data2=SECOND; Piii total = a + b;
code.msg="Hello !!"; MOVH A, GRW3+4 The arguments a and b
4 ADDW A, GRW3+6 copied on the stack are
a=func_subl (code.datal, code.data2, code.msg);l Ly MOV @RW3+-4, A accessed
} ~
P while (*moji) {

int func_subl (int a, int b, char *moji) L 27:

. n while (*moji) {
int total; MOVW A, QRW3+8
char *c; MOV A, DTB:@A
char mojiretu([10]; BEQ L 26

Iy *C+t = *moji++;
MOVH A, GRW3+-2
c = mojiretu; /—) MOVIW RWO, A
while (*moji) { " MOVN A, #1
*cH+ = *mojit+; _ ' The argument *moji that ADDW A
} - was copied on the stack MOVW  @RW3+-2, A
Teturn (total); is referenced. MOVW A, QRW3+8
} MOVW  RWl, A
MOVN A, #1
NO SECTION-NAME SIZE ATTRIBUTES ADDW A
MOVW  @RW3+8, A
0 CONST + v v oo e e 000009 CONST  REL ALIGN=2 MOV A, ERWl
1 CODE . . o o 000051 CODE  REL ALIGN=1 Mov ERWO, A

59



CHAPTER 8 REDUCING ARGUMENTS TO CONSERVE STACK AREA

8.1.2 Argument Structure Passing

Argument structure passing can be performed with very simple C code. However, in
this method of argument passing, all structure elements are copied on the stack and
then passed to the function. Therefore, the larger the number of elements of the
structure to be passed, the larger the stack area used.

m  Argument Structure Passing

Figure 8.1-3 "Argument Structure Passing" shows an example of argument structure passing.
In this example, a 6-byte area for arguments is allocated on the stack in the same way as
explained in Section 8.1.1 "Normal Argument Passing". In addition, an 11-byte code is required
for copying the structure to the stack.

A 28-byte stack area is required for processing from calling function func_sub2( ) to its
execution. (See (2), "Argument structure passing," in Figure 8.1-5 "Stack Usage Size
Depending on Argument Type during Function Calls".)

It is very easy when coding in C to specify a structure as an argument, but this method is not
very efficient in terms of the generated code and the required stack size.

Figure 8.1-3 Argument Structure Passing

#define FIRST 20 Piii a=func_sub2 (code) ;
#define SECOND 40 ADDSP  #-6 To pass the argument structure, all
) MOvVW A, SP the structure codes are copied to the

St?“itdlési( MOVEA A, @RW3+-8 stack.

inp e MOVW RWO, #6 A 6-byte area for saving the structure

char *msg; f MOVST SPB, SPB codes is prepared on the stack.
Vi CALL _func_sub2 An 11-byte code is required for

ADDSP  #6 copying the structure to the stack.

func_main (void) Movw @RW3+-2, A

{
int a;
struct list code;

[
total = str_data.datal + str_data.data2;

MOVW A, GRW3+4 hile (*str dat o
Piia wnile sr_aa.msg
code.datal=FIRST; ADDW A, @RW3+6 L 27:
code.data2=SECOND; MOVW CRW3+-4, A . while (*str data.msg) {
code.msg="Hello !!"; iiii ¢ = mojiretu; MOVW A, @RW3+8
MOVEA A, @GRW3+-14 4 K
a=func_sub2 (code) ; ﬂ fMovw @RW3+-2, A MoV A, DIB:@A
} = BEQ L 26
‘ 1 o+t = *str_data.msg++;
int func_sub2 (struct list str_data) MOVW A, @RW3+-2
{ The structure elements MOVW RWO, A
int total; that were copied to the MOVN A, #1
char *c; stack are referenced. ADDW A
char mojiretu[10]; MOVW @RW3+-2, A
= 2 MOVW A, @RW3+8
[zo:a;ogiizigéata.datal + str_data.data2; ] > MovW RWI, A
while (*str_data.msg) { MOVN A, #1
*c++ = *str data.msg++; ADDW A
} - MOVW @RW3+8, A
return (total) ; MOV A, @RW1
} MOV @RWO, A
NO SECTION-NAME SIZE ATTRIBUTES
0 CONST . . . . . « « o « o o o . 000009 CONST REL ALIGN=2
1 CODE . . . . . v « o o v . 000057 CODE REL ALIGN=1
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8.1.3  Structure Address Passing

8.1 Passing Arguments During Function Calls

In structure address passing, only the structure address is stored on the stack before

calling the function.

m  Structure Address Passing

Figure 8.1-4 "Structure Address Passing" shows an example of structure address passing.

In this example, a 2-byte area for arguments is allocated on the stack. The code for copying the
arguments consists of four bytes, which is much smaller than the normal argument passing and

argument structure passing.

A 26-byte stack area is required for processing from calling function func_sub3( ) to its
execution. (See (3), "Structure address passing," in Figure 8.1-5 "Stack Usage Size Depending
on Argument Type during Function Calls".)

Specifying a structure address as an argument is the most efficient method in terms of
conserving the area for arguments to be used.

Figure 8.1-4 Structure Address Passing

#define FIRST 20 ‘

#define SECOND 40 a=func_sub3 (&code) ;
MOVEA A, QRW3+-8

struct list{ PUSHW A

int datal; CALL _func_sub3

int data2; POPW AH

* .

char *msg; MOVW  @RW3+-2, A

bi ¥

To pass the address of the structure code that was
defined using the function func_main( ), the address
of the structure code is copied to the stack.

A 2-byte address area is allocated on the stack.

A 3-byte code is required for copying the structure

code.datal=FIRST;

func_main (void) HE total = poi_data->datal + poi_data->data2;
{ MOVW  RWO, @RW3+4
int a; MOovwW A, Q@RWO
struct list code; ADDW A, QRWO+2 The value of element msg of the structure code that
A MOVW  ERW3+-6, A was defined using the function func_main() is

code.data2=SECOND; \ I

assigned to local variable d.

code.msg="Hello !!"; The values of elements datal and data2 4 = poi data-smsqs
of the structure code that was defined Movaf?wG@Rwsfz;
a=func_sub3 (scode) ; | using the function func_main( ) are MOVTT A hRiora
} accessed dwecﬂy. “Méﬁﬁ'"""'"@ﬁﬁéﬁtz;"A""
int func_sub3(struct list *poi_data) £7£; while (*d) {
{ — .
int total; 1 while (*d) {
char *c, *d; MOVW A, QRW3+-2
char mojiretu[10]; MoV A, DTB:QA
BEQ L 26
[total = poi_data->datal + poi_data->data2; ] i *ot++ = *d++;
C = mojiretu; = > MOVW A, @RW3+-4
d = poi_data->msg; / MOVW RWO, A
while (*d) { MOVN A, #1
*c++ = *d++; ADDW A
} MOVW @RW3+-4, A
return (total); MOovwW A, QRW3+-2
) MovW RW1, A
MOVN A, #1
NO SECTION-NAME SIZE ATTRIBUTES ADDW A
MovVH @RW3+-2, A
0 CONST . . . . . . « . o o . . . 000009 CONST  REL ALIGN=2 MoV A, GRW1
1 CODE . « © v v v v e e 000055 CODE REL ALIGN=1 MoV GRWO, A
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CHAPTER 8 REDUCING ARGUMENTS TO CONSERVE STACK AREA

8.1.4  Stack Status During Function Calls

This section describes the status of the stack for function calls as explained in
Sections 8.1.1 "Normal Argument Transfer”, 8.1.2 "Argument Structure Passing", and
8.1.3 "Structure Address Passing".

m Stack Status at Function Call

Figure 8.1-5 "Stack Usage Size Depending on Argument Type during Function Calls" shows the
status of the stack used for function calls explained in Sections 8.1.1 "Normal Argument
Transfer", 8.1.2 "Argument Structure Passing", and 8.1.3 "Structure Address Passing". This
figure shows the relationship between reducing the arguments and conserving the stack area
when calling a function.

In these examples, the stack size used does not differ much because only three arguments
were passed. However, when, for example, ten 4-byte arguments are to be passed, the stack
sizes may differ considerably.

Therefore, when many arguments are to be passed during a function call, the most efficient

62

method is to use a structure argument and to pass only its address.

Figure 8.1-5 Stack Usage Size Depending on Argument Type during Function Calls

— <« SP o <« SP sp
Argument e Argument L Argument &code
area datal area datal area Ret dd
(6 bytes) (6 bytes) (2 bytes) eturn address
data2 data2 Previous RW3
<+ RW3
Return address Return address ¢ c
Previous RW3 i
«RW3 Previous RW3 - RW3 d
c c total
total total \%gfiglble
Local Local area
variable variable (16 bytes) .
area { area mojiretu [10]
(14 bytes) || mojiretu [10] (14 bytes) [ mojiretu [10]
28 bytes 28 bytes  \ 26 bytes
Register RWO
Register Register save area
save area - Exz save area EVWVS (4 bytes) Rw1 - Sp
(4 bytes) « SP (4 bytes) | « sp
(1) Normal argument passing (2) Argument structure passing (3) Structure address passing




8.2 Conditions for Structure Address Transfer

8.2 Conditions for Structure Address Transfer

This section describes the conditions that must be satisfied to pass a structure
address as a function argument.

m Conditions for Passing Structure Addresses

As explained in Section 8.1 "Passing Arguments During Function Calls", when a large number
of arguments is to be passed, it is most efficient in terms of stack use to define the arguments in
a structure and to pass only the address of that structure.. However, the following conditions

must be satisfied to pass the address of such a structure.

Figure 8.2-1 Structure Passing and Structure Address Passing

Because the function func_sub3()
accesses this area, the original
The structure code that was defined structure code is not affected
msg using the function func_main( ) is msg even |f_ﬁlement values are
i overwritten.
datal copied to the argument area. datal
data2 data2
Return address
e <+ SP Argument « S
Argument g ?zreba tes) &code
area 1 datal Y Return address
(6 bytes) )
data2 Because the function func_sub2() Previous RW3
accesses this area, the original «RW3
Return address| structure code is not affected even s c
- if element values are overwritten.
Previous RW3 d
<+ RW3
c total
total Local
variable
Local area
variable 16 bt .
area (16 bytes) mojiretu [10]
(14 bytes)| | mojiretu [10]
\
Register RWO
: save area
Register RWO (4 bytes) RW1
save area { <+ Sp
(4 bytes) | Rw1 <SP

In argument structure passing (see Section 8.1.2 "Argument Structure Passing"), each element
of the structure is copied to the stack and then passed to the respective function. Therefore,
even if the value in an element of the structure is changed, the value of the structure in the
calling source does not change. However, in the structure address transfer (see Section 8.1.3
"Structure Address Passing"), the structure is directly accessed for processing. Therefore, if the
value of an element of the structure is changed, the structure value that was held before the
function call will be lost. In the example of structure address passing in Section 8.1.3 "Structure
Address Passing”, loss of the information for structure code element msg was avoided by
adding the local variable d was added to the function func_sub3( ) so that the value could be
assigned to the variable d before being used.

When the value in the calling source must be kept unchanged during structure address passing,
the receiving function must operate in the way described above.. In the example of structure
address passing explained in Section 8.1.3 "Structure Address Passing", the stacking efficiency
is highest even though this type of processing is performed.
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[Tip]
Softune C Checker:

The Softune C Checker will output a warning if some arguments were not referenced at all
by the called function. Also, if a structure or union was specified in an argument, a warning
message is output to the effect that performance may be reduced. Examine the method of
argument passing considering the contents of these warning messages.
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CHAPTER 9 CONSERVING STACK AREA BY
IMPROVEMENTS ON THE AREA FOR
FUNCTION RETURN VALUES

This chapter describes how to conserve stack area by improvements on the function
return value area.

As already described, the number of function calls and the number of arguments
required for function calls can be reduced by using inline expansion. The size of stack
used can also be reduced by improvements with respect to the return values of a
function. This chapter describes this third method of stack conservation, reducing the
size of the function return value area.

9.1 "Return Value of Functions"

9.2 "Functions Returning Structure-type Values and Stack Conservation”

9.3 "Functions Returning Union-type Values and Stack Conservation”
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9.1 Return Value of Functions

This section describes the return values of functions.

The type of a function is the type of the value returned when the function terminates.
The type of this return value determines whether the return value is to be returned to
the register or stack.

m Return Value of Functions

The return value of functions have the same type as ordinary variables. When defining a
function, the type of the return value for the function must be specified. Table 9.1-1 "Function
Return Values and Return Value Interface" lists the relationship between function return values
and the interface for return values.

Table 9.1-1 Function Return Values and Return Value Interface

Type of return value Allocated size (bytes) Return value interface
void - ---
char 1 AL

signed char 1 AL
unsigned char 1 AL
short 2 AL
unsigned short 2 AL
int 2 AL
unsigned int 2 AL
long 4 A
unsigned long 4 A
float 4 A
double 8 On stack
long double 8 On stack
near Pointer/address 2 AL
for Pointer/address 2 A
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m Function Return Values Returned via the AL Register

The fcc907 places return values of up to two bytes into the AL register and then returns these
values to the calling function. When the value to be returned by a function is of the type "char"

(1 byte), "short" (2 bytes), or "int" (2 bytes), the value is stored in the AL register of the F2MC-16
family as shown in Figure 9.1-1 "Returning Function Return Values Using the AL Register" and
then returned to the function caller. Therefore, when such a function is to be called, the return
address save area or return value area shown in Figure 6.1-1 "Areas Allocated on the Stack
When a Function Is Called" is not required.

Figure 9.1-1 Returning Function Return Values Using the AL Register

int data = Oxfff;
char func_char (void)
char func_char (void) ; {
short func_short(void) ; char a = 10;
int func_int (void); . .
.
.
void main (void) return(a) ; Piii return(a);
( ) > MOV A, @GRW3+-1
char char data;
short short_data;
int int_data; AL short func_short (void)
. {
. short a = o
. 0x1000; . °
char_data = func_char( ); ‘. ° Piii return(a);
[ceturn(a); T4 wovw a, cris+-2
. }
.
: /|
— T L i func_int(void)
short _data = func_short( ); int —
[Frore sate = e 4 :
. int a = 10;
. P . .
| int data = func_int( ); °
) AL |_ } T Movw A, eRW3+-2
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m  Function Return Values Returned via the A Register

The fcc907 places 4-byte return values into the A register and then returns these values to the
calling function. When the value to be returned by a function is a "long" (4 bytes) or "float" (4

bytes) type, the value is stored in the A register of the F2MC-16 Family as shown in Figure 9.1-2
"Returning Function Return Values Using the A Register" and then returned to the function
caller. Therefore, when such a function is to be called, the return value address save area or

return value area shown in Figure 6.1-1 "Areas Allocated on the Stack When a Function Is
Called" is not required.

Figure 9.1-2 Returning Function Return Values Using the A Register

<

int data = Oxfff; long func_long(void)
{
long func_long(void) ; long a;
float func_float (void); °
— .
void main (void) }
{

AN

long long data; \ .
:
float float_data; i return(a);

/ MOVL A, GRW3+-4
ta = func long( ) l/ float func float (void)
aé

Bl eoee

long

{
float a;
.
.

return(a) ;

float data = func_float( );
v

) : N\ ¢
.
i return(a) ;

MOVL A, Q@RW3+-4
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m Returning Function Return Value via the Stack

When a function does not place a return value into the AL register (2 bytes) or A register (4
bytes), the return value is returned via the stack. In this case, the return address save area and
return value area shown in Figure 6.1-1 "Areas Allocated on the Stack when a Function is
Called" are allocated.

Some functions return values of other types such as double (8 bytes). Such functions return
values via stack areas as shown in Figure 9.1-3 "Returning Function Return Values via Stack
Areas".

Figure 9.1-3 Returning Function Return Values via Stack Areas

int data = Oxfff;

double func_double (void) ; ?ouble func_double(void)
double a;

void main (void) .

{

double double_data; return(a);

.

.

. / Relturn
value

double_data = func_double( ); k Piii A return(a);

MOVW A, SP

MOVW A, DTB:QA

) MOVW RW4, A

MOVL A, @RW3+-8+4

MOVL @RW4+4, A

MOVL A, @RW3+-8

MOVL aGrRM, A
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m Functions Returning Pointer-Type Values

70

Some functions have "pointer" type return values. The size of the pointer handled by the fcc907
depends on the memory model specified at compilation and the _ _near-type or _ _far-type
qualifier specification.

Figure 9.1-4 Functions Returning a Return Value of the Type "pointer"

char moji[4] = {"abc"};

void main (void)

{

char * func_n_pointer (void)
{

.
char c_data; .
char * char_p; M

char * func_pointer (void);
.

: return(&moji[2]);

° }

/] l—r
char_p = func_pointer ( );ﬁ— A

Piii return (&moji[2]); P return (&
MOVW A, # moji+2 MOVL A, # moji

When a small model is used for When a large model is used for
compilation, the address (2 bytes) compilation, the address (4 bytes)
of a char-type variable is returned of a char-type variable is returned
to the A register. to the A register.

Table 9.1-2 Memory Models and Addressing at Access

Small model Medium model Compact model Large model

Function 16-bit addressing | 24-bit addressing | 16-bit addressing | 24-bit addressing
access

Variable 16-bit addressing | 24-bit addressing
access

Table 9.1-2 "Memory Models and Addressing at Access" shows the relationship between
memory models and addressing.

When a small model is used for compilation or when the pointer has been clearly qualified using
the _ _near type, the size of the pointer will be two bytes. As a result, the pointer will be
returned to the AL register. When a large model is used for compilation or when the pointer has
been clearly qualified using the _ _far type, the pointer will be four bytes. As a result, the
pointer will be returned to the A register. For a medium model, the pointer will be returned to
the A register (4 bytes) when a function address is returned or to the AL register (2 bytes) when
a variable address is returned. For a compact model, the pointer will be returned to the AL
register (2 bytes) when a function address is returned or to the A register (4 bytes) when a
variable address is returned. These functions can be summarized as follows:

Pointer returned to the AL register (2 bytes)
___near-type qualified pointer
Variable/function access when a small model is used for compilation

Variable access when a medium model is used for compilation

Function access when a compact model is used for compilation



O Pointer returned to the A register (4 bytes)

_ _far-type qualified pointer

9.1 Return Value of Functions

Variable/function access when a large model is used for compilation

Function access when a medium model is used for compilation

Variable access when a compact model is used for compilation

m  Functions Returning Structure-Type Values

Some functions have return values of the type "structure."

returned depends on the members defined in the structure. When a function is called th
returns a structure, the function places a structure-type return value on the stack as shown in

Figure 9.1-5 "Functions Returning a Return Value of the Type "structure

The size of the structure to be

at

For details of calling

functions that return a structure, see Section 9.2 "Functions Returning Structure-type Values

and Stack Conservation."

Figure 9.1-5 Functions Returning a Return Value of the Type "structure"

struct s_dataf{
int id;
int before;
int after;
}data_struct;

void main (void)

{

struct s_data local_struct;

struct s_data func_struct (void);

{

struct s_data func_struct (void)

data_struct.id = 0x10;
data_struct.before = 0x09;
data_struct.after = 0x11;

| return(data_struct) ;

i /

/| [Return
local_struct = func_struct( );’h{ value

MOvVW
MOVW
MOVW
MOVW
MOVSI

return(data_struct);
A, SP

A, DTB:@A

A, #_data_struct
RWO, #6

SPB, DTB

A struct-type return value is returned to the area allocated on the stack.
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m  Functions Returning Union-Type Values

72

Some functions return a union. The size of union to be returned depends on the members
defined in the union, in the same way as for the above discussed functions with a structure-type
return value. When a function that returns a union is called, the function places a union-type
return value on the stack as shown in Figure 9.1-6 "Functions Returning a Return Value of the
Type "union™. For details of function calls to functions that return a union, see Section 9.3
"Functions Returning Union-type Values and Stack Conservation."

Figure 9.1-6 Functions Returning a Return Value of the Type "union”

union u_dataf{
short short_id;
long long_id;
}data_union;

union u_data func_union (void)
{

void main (void)

{

data_union.short id = 0x10;

union u_data func_union(void) ; -
— - |return(data union) ;
A L

! ]

union u_data local_union;

Return
/1_—" value
local_union = func_union( );(k
iiii return(data_union);

MOVW A, SP

MOVW A, DTB:@A

MOVW A, #_data_union
MOVW RWO, #4

MOVSI SPB, DTB

A union-type return value is returned to the area allocated on the stack.




9.2 Functions Returning Structure-type Values and Stack Conservation

9.2 Functions Returning Structure-type Values and Stack
Conservation

This section describes improvements with respect to the return values for a function
that returns a value of the type "structure.”

When a function is called that returns a value of the type "structure”, the return value
is not placed into an register but is stored on the stack. The larger the structure-type
return value, the larger the stack area used.

m Calling a Function Returning a Structure-type Value

Figure 9.2-1 "Calling a Function That Returns a Structure" and Figure 9.2-2 "Stack Status for
Calling Functions That Return a Structure" show an example of a function that has a return
value of the type "structure." In this example, the function main( ) calls a function of the type
s_data. To call the function func_struct( ) that returns a value of the type "structure", the
following operations are necessary:

1.

The calling function main( ) loads the start address of the area to which the func_struct( ) will
output its return value into the A register before calling the function func_struct( ). (See
Figure 9.2-1 "Calling a Function that Returns a Structure".)

The called function func_struct( ) saves the value of the A register to the stack before
starting with function processing. (See Figure 9.2-2 "Stack Status for Calling Functions That
Return a Structure™.)

. When function processing terminates, the return value of the type "structure" is passed to the

calling function main( ) based on the beginning address of the area for saving the return
values from the function. (See Figure 9.2-2 "Stack Status for Calling Functions That Return
a Structure".)

. The calling function main( ) copies the return value from the stack to a local variable. (See

Figure 9.2-1 "Calling a Function That Returns a Structure".)

Figure 9.2-1 Calling a Function That Returns a Structure

{

struct s_dataf{

}data_struct;

void main (void)

int id;

int before;
int after; @ The beginning address of the area to which the
structure-type return values from the function
func_struct( ) are to be stored is stored in the A
register before calling the function.

struct s_data func_struct (void);
T - unc_stru (void) local_struct = func_struct();

Pii
struct s_data local_struct; C) | MOVEA A, @RW3+-6
CALL _func_struct

MOVEA A, @RW3+-12
MOVEA A, @GRW3+-6
MOVW RWO, #6

|1oca1_struct = func_struct( ); @

MOVST DTB, DTB

@ The return value that was passed from
function func_struct( ) is copied from the stack
area to the variable area so that the return value
is assigned to the local variable local_struct.

To call a function that returns a structure, the area for saving the structure-type return value
must be prepared as well as the argument to be passed to the function and the local variables
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of the called function. The larger the returned structure, the larger the stack size used. In this
example, the return value that is saved on the stack is copied to structure local_struct because
the structure that was returned from the function func_struct( ) is assigned to the structure
local_struct of the local variable.

Figure 9.2-2 Stack Status for Calling Functions That Return a Structure

(@ When the function func_struct( ) is called, the A register value
(leading address of the area used to store the return value returned

struct s data func struct (void) by the function func_struct( )) is saved on the stack.
{ .GLOBAL _func_struct
data_struct.id = 0x10; func_struct:
data_struct.before = 0x09; B ~ LINK #0
data_struct.after = 0x11; @ PUSHW (RWO)
\ PUSHW A
return(data_struct); \‘ 1ii: {
! AN piii data_struct.id = 0x10;
MOV A, #16
MOVW _data_struct, A
iiii data_struct.before = 0x09;
Return address MOVN A, #9
A Previous RW3 | - MOVW  data struct+2, A
Address of the Area for returning iiii data_struct.after = 0x11;
area for returning _| (D | the return value of MoV A, #17
the return value (,( the function @ MOV _data_struct+4, A
func_struct() RW3-6 \; i return (data_struct);
@ Local variable N MOVW A, SP
local_struct of SP position MOVIW A, DTB:QA
[henztajinnc(tl)on RW3-12 when calling @ MOVW A, #_data_struct
a the function MOVW RWO, #6
Return address Sp =, Main() MOVSI SPB, DTB
Previous RW3 ", }
Provious RWO IX 18 bytes POPW A 3 The return value is returned based
< POPW (RWO) on the leading address of the area
L" UNLINK used to return the return value of
4— SP - the function copied on the stack.
SP position when calling .END

the function func_struct( )
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m Calling a Function Passing the Address of the Structure Variable to which the Return Value is to be

Passed

In the function processing shown in Figure 9.2-1 "Calling a Function That Returns a Structure”
and Figure 9.2-2 "Stack Status for Calling Functions That Return a Structure", the structure that
was returned from function func_struct( ) is assigned to the local structure variable local_struct.
Therefore, the return value is copied from the stack to the structure local_struct.

In this case, the function should be defined in such a way that the function passes the address
of the structure variable to which the return value is to be passed. This reduces the size of the
stack used.

Figure 9.2-3 "Passing the Structure Address to the Function" and Figure 9.2-4 "Stack Status
When Calling a Function That Passes a Return Value to a Specified Structure" show how the
call to the function returning a structure was improved by changing the function call shown in
Figure 9.2-1 "Calling a Function That Returns a Structure" and Figure 9.2-2 "Stack Status for
Calling Functions That Return a Structure". The function func_struct_addr( ) is called as
follows:

1. The address of the structure local_struct is stored as argument on the stack before calling
the function func_struct_addr( ). (See Figure 9.2-3 "Passing the Structure Address to the
Function™.)

2. The called function func_struct_addr( ) directly writes a value to the local variable
local_struct of the function main( ) in accordance with the address stored on the stack. (See
Figure 9.2-4 "Stack Status When Calling a Function that Passes a Return Value to a
Specified Structure".)

Figure 9.2-3 Passing the Structure Address to the Function

struct s_dataf{
int id;
int before;
int after;

}data struct; @ The beginning address of the area for storing
- return values from the function
void main (void) func_struct_addr( ) is stored on the stack

( before calling the function.
void func_struct_addr (struct s_data *);

func_struct_addr (&local_struct);

struct s_data local_struct; MOVEA A, @RW3+-6
@ PUSHW A
CALL _func_struct_addr

POPW AH

func_struct_addr(&local_struct); (!7
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Figure 9.2-4 Stack Status When Calling a Function That Passes a Return Value to a Specified Structure
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void func_struct_addr (struct s_data *ans)

{

ans->id = 0x10;

ans->before = 0x09;
ans->after = 0x11;

return;

Return address

Previous RW3

Local variable
local_struct of
the Tunction
main( )

Local variable
Rw-6 local_struct of

<

RW+4

Return address

Previous RW3

function main()

8 bytes

Previous RW0

<« RW3
sp 4

SP position when calling
the function func_struct( )

begin_of_ function

.GLOBAL _func_struct_addr
_func_struct addr: @ The return value is directly passed
LINK #0 to the local variable local_struct of
PUSHW (RWO) the function main( ) in accordance
iri: ( with the address saved on the stack.
rii ans->id = 0x10;
MoV A, #16
@ MOVW A, @RW3+4
MOVW DTB:@AL, AH
Piii ans->before 0x09;
MOVW RWO, @RW3+4
MOVN A, #9
MOVW @RWO+2, A
Piii ans->after 0x11;
MOVW RWO, @RW3+4
MOV A, #17
MOVW @RWO+4, A
P return;
Piii }
N POPW (RWO)
UNLINK
RET
.END




9.3 Functions Returning Union-type Values and Stack Conservation

9.3 Functions Returning Union-type Values and Stack
Conservation

This section describes improvements with respect to the return values for a function
that returns a value of the type "union."

When a function that returns a value of the type "union" is called, the return value is
not placed into registers but is stored on the stack. The larger the value of the
returned union, the larger the stack area used.

m Calling a Function Returning a Union-Type Value

Figure 9.3-1 "Calling a Function That Returns a Union" and Figure 9.3-2 "Stack Status When
Calling a Function That Returns a Union" show an example for a function that returns a value of
the type "union." In this example, the function main( ) calls a function of the type "u_data."
Calling the function func_union( ) that returns a value of the type "union" requires the following
operations:

1.

The calling function main( ) loads the start address of the area to which the function
func_union( ) will return a value into the A register before calling the function func_union( ).
(See Figure 9.3-1 "Calling a Function That Returns a Union".)

. The called function func_union( ) saves the value of the A register to the stack before

starting with function processing. (See Figure 9.3-2 "Stack Status When Calling a Function
That Returns a Union".)

. When function processing terminates, the return value of the type "union" is passed to the

calling function main( ) based on the start address of the area for storing the return values
from the function. (See Figure 9.3-2 "Stack Status When Calling a Function That Returns a
Union".)

. The calling function main( ) copies the return value from the stack to the local variable. (See

Figure 9.3-2 "Stack Status When Calling a Function That Returns a Union".)

Figure 9.3-1 Calling a Function That Returns a Union

(@ The beginning address of the area in which the

union u_data{ ) union_type return value from function func_union ()
short short_id; . b_ di dinthe A . b_f
long long id; IS tQ e store I$ stored in the A register before
}data_union; calling the function.
void main(void) i local union = func union();
{
union u_data func_union (void); | MO By @RW3+-4
@ CALL _func_union
union u_data local union;
- - MOVEA A, @RW3+-8
MOVEA A, @QRW3+-4
@ MOVW RWO, #4
local union = func union( ); L MOVSI DTB, DTB
}

@ The return value that passed from the function func_union () is copied
from the stack area to the variable area so that the return value is
assigned to the local variable local_union.

For calling a function that returns a union, the area for saving the union-type return value must
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be prepared as well as the argument to be passed to the function and the local variables of the
called function. The larger the returned union, the larger the stack size used. In this example,
because the union that was returned from function func_union( ) is assigned to the union
local_union of the local variable, the return value that is saved on the stack is copied to the
union local_union.

Figure 9.3-2 Stack Status When Calling a Function That Returns a Union

@ When the function func_union( ) is called, the
A register value (leading address of the area
used to store the return value returned by the
function func_union()) is saved on the stack.

union u_data func_union(void)

{

i begin_of function
.GLOBAL _func_union

data union.long id = 0Oxff; .
- - _func_union:

LINK 0
return (data_union) ; ® PUSHW TRWO)
) [ PUSHW A ]
{
A P data_union.long_id = 0xff;
Return address MoV A, #255
Address of the. @ - ZEXTW
area for returning — Previous RW3 <+ RW3 MOVL data union, A
the return valuey I—~Area for returning — — r A
tgtfetheeu;[lr;lg‘eil(l)une ;i return(data_union);
® func_union() RW3- @ MOVW A, SP
\Lo%ca?I xgir(i]anbloe} SP position MOVW A, DTB:GA
the function when calling @ MOVW A, #_data_union
main() RW3-8 the function MOV RWO, #4
Return address sp.main() MOVST SPB. DTB
Previous RW3 | . buvm % Piii }
3 Previous RW0 * 8 bytes POPW A ® The return value is returned
POPW (RWO) based on the leading address
spL UNLINK of the area used to return the
SP position when RET return value of the function
calling the function -END copied on the stack.
func_union()

m Calling a Function Passing the Address of a Union Variable to Which the Return Values Are to Be
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Passed

In the function processing shown in Figure 9.3-1 "Calling a Function That Returns a Union" and
Figure 9.3-2 "Stack Status When Calling a Function That Returns a Union", the union that was
returned from function func_union( ) is assigned to a local variable union local_union.
Therefore, the return value is copied from the stack to the union local_union.

In this case, the function should be defined in such a way that the function passes the address
of the union variable to which the return value is to be passed. This reduces the size of stack
used.

Figure 9.3-3 "Passing the Union Address to a Function" and Figure 9.3-4 "Stack Status When
Calling a Function That Passes a Return Value to the Specified Union" show how the call to the
function returning the union was improved by changing the function call shown in Figure 9.3-1
"Calling a Function That Returns a Union" and Figure 9.3-2 "Stack Status When Calling a
Function That Returns a Union". The function func_union_addr( ) is called as follows:

1. The address of the union local_union is stored as argument on the stack before calling the
function func_union_addr(). (See Figure 9.3-3 "Passing the Union Address to a Function".)

2. The called function func_union_addr( ) directly writes a value to the local variable
local_union of function main( ) in accordance with the address stored on the stack. (See
Figure 9.3-4 "Stack Status When Calling a Function That Passes a Return Value to the
Specified Union".)
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Figure 9.3-3 Passing the Union Address to a Function

union u_dataf{
short short_id;
long long_id;
}data union;
B @ The start address of the area for storing the return
void main (void) value from function func_union_addr( ) is stored on
( the stack before calling the function.

void func_union_addr(union u_data *);

func_union_addr(&local_union);
MOVEA A, Q@RW3+-4

union u_data local union; ® | PUSHW A
° CALL _func_union_addr
.

POPW AH

func_union_addr (&local_union) ;

Figure 9.3-4 Stack Status When Calling a Function That Passes a Return Value to the Specified Union

void func union_addr (union u_data *ans) jmmmm o begin_of_ function

{ .GLOBAL _func_union_addr
ans->long_id = Oxff; _func_union_addr: (@) The return value is directly returned
LINK  #0 to the local variable local_union of

PUSHW  (RWO) the function main() based on the
address saved on the stack.

ans->long id = O0xff;
MOVW RWO, @RW3+4

MOV A, #255
@ ZEXTW

MOVL __ @RWO, A

return; \l
} \ P {

Return address

i iiii return;
Previous RW3 RW3 [
| Local v_anab{ﬁ i }
%) ocal_unio of the POPW (RWO)
funcion main() | pyy3.4 SP position when N UNLINK
RW3+4 @ calling the RET
Return address [T~ sp function main() .END
Prev}mus RW3 « RW3 © 6 bytes
Previous RWO0O — SP(

SP position when calling
the function func_union()




CHAPTER 9 CONSERVING STACK AREA BY IMPROVEMENTS ON THE AREA FOR FUNCTION RETURN VALUES
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PART Ill  USING LANGUAGE EXTENSIONS

Part Il describes the fcc907 language extensions.

The fcc907 supports specifications for using the F 2MC-16 family architecture. These
specifications are referred to as the language extensions. Part 3 begins with an
overview of the language extensions. It then provides notes on including assembler
code in a C program and on the specification and placement of the _ _io area and
__direct type qualifier. This part also provides notes on creating and registering
interrupt functions.

CHAPTER 10 "WHAT ARE LANGUAGE EXTENSIONS?"
CHAPTER 11 "NOTES ON ASSEMBLER PROGRAM IN C PROGRAMS"
CHAPTER 12 "NOTES ON DEFINING AND ACCESSING THE I/O AREA"

CHAPTER 13 "MAPPING VARIABLES QUALIFIED WITH THE _ _direct TYPE

QUALIFIER"
CHAPTER 14 "CREATING AND REGISTERING INTERRUPT FUNCTIONS"
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CHAPTER 10 WHAT ARE LANGUAGE EXTENSIONS?

The fcc907 provides the following functionality through language extensions:
* Coding of Assembler instructions using an _ _asm statement

» Extended type qualifiers

» Extended functions using #pragma

 Interrupt-related built-in functions

» Other built-in functions

This chapter describes these functions.

10.1 "Coding Assembler Instructions Using an _ _asm Statement”
10.2 "Extended Type Qualifiers"

10.3 "Extended Functions Using #pragma"

10.4 "Interrupt-Related Built-in Functions”

10.5 "Other Built-in Functions"
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10.1 Coding Assembler Instructions Using an _ _asm Statement

This section briefly describes how to include Assembler instruction into a C program
using an _ _asm statement.
The _ _asm statement is used to include an Assembler instruction into a C program.

m Coding Assembler Instructions Using an _ _asm Statement

The _ _asm statement is used to include an Assembler instruction into a C program. Write the
___asm statement as follows:

__asm ("Assembler instruction™);

C programs cannot directly set the values of CPU registers. Moreover, some operations of C
programs cannot be executed fast enough. To execute such operations, you can use an
_asm statement to include instead an Assembler instruction into the C program.

The fcc907 uses the _ _asm statement for coding Assembler instructions both inside a function
or outside functions.

Figure 10.1-1 Function in Which _ _asm Statement Is Used

. PROGRAM asml
.LIBRARY "1ib907s.1ib"

void main (void)

{ . _ . .SECTIONCODE, CODE, ALIGN=1
int flag = 0x01; jm————== begin_of function

int i; .GLOBAL _main
main
_ _asm(" MOVN A, #0"); LINK #4
_ _asm(" MOVW  @RW3+-2, A"); MOVN A, #1
asm ("L 24:"); MOVW @RW3+-2, A
_ _asm(" MOVW A, @RW3+-2"); MOVN A, #0
~ Tasm(" CMPW A, #100"); s MOVIW @RW3+-2, A
— asm(® BGE - L_23"); = - MOVW A, GRW3+-2
_ _asm(" INCW @RW3+-2"); CMPW A, #100
~ “asm(" BRA L _24"); BGE L 23
_ _asm(J/1_23:"); INCW @RW3+-2
} 7 BRA L 24
L 23:
. UNLINK
The assembler executes the code assuming that the RET
character string coded starting in column 2is an CEND

instruction. A tab code or null character string must
be included at the beginning of the character string.

Figure 10.1-1 "Function in Which _ _asm Statement Is Used" shows an example for the coding
of an _ _asm statement. When an _ _asm statement is included, an Assembler instruction is
expanded at the location of the statement is included in the text.

See CHAPTER 11 "NOTES ON ASSEMBLER PROGRAMS IN C PROGRAMS" for information
about including assembler code using the _ _asm statement.
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10.2 Extended Type Qualifiers

This section describes the extended type qualifier, which is one of the language
extensions.

The fcc907 provides the following six extended type qualifiers in addition to the
ordinary type qualifiers (const and volatile):

* _ _near type qualifier

o _ fartype qualifier

e __iotype qualifier

e _ _direct type qualifier

* _ _interrupt type qualifier

e _nosavereg type qualifier

These six type qualifiers are dependent on the F 2MC-16 family architecture.

m Extended Type Qualifiers

The fcc907 provides the following extended type qualifiers:

___ near type qualifier

__ far type qualifier

_ _io type qualifier

_ _ direct type qualifier

_ _ interrupt type qualifier
_ _ nosavereg type qualifier

Qualifiers specific to the
fcc907

Sections 10.2.1" _ near Type Qualifier and _ _far type Qualifier" to 10.2.5" nosavereg Type
Qualifier" briefly describe the functions of the above type qualifiers and provide notes on their
use.
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10.2.1 _  near Type Qualifier and _ _far Type Qualifier

This section describes the _ _near type qualifier and _ _far type qualifier of the fcc907
type qualifiers. These type qualifiers can be specified for variables and functions. The
___near-type qualified variables and functions are accessed using 16-bit addressing.
The _ _far-type qualified variables and functions are accessed using 24-bit addressing.

m  Specifications of the _ _near type qualifier and _ _far type qualifier

The _ _near type qualifier can be specified for variables and functions. The _ _near-type
qualified variables and functions are accessed using 16-bit addressing regardless of the
memory model specified at compilation. In addition, the _ _far-type qualified variables and
functions are accessed using 24-bit addressing.

Figure 10.2-1 Specification of the _ _near-type Qualifier (for a Large Model)

Specification

of the __near -SECTION  CODE_near, CODE, ALIGN-1
type modifier extern void near near_pro (void) ;| [ begin_of function
== .GLOBAL _main
Specification extern void pro (void); _main:
of the _ _near LINK #2
type modifier N[ " near int n_test[4] = (1,2,3,4}; | PP {
= = piii int m_data = 0;
int test[4] = {1,2,3,4}; MOVN A, #0
. MOVH @RW3+-2, A
C |
om Ilel Frr near_pro() ;
-moge! large CALL _near_pro
void main (void) iiii pro();
{

| near_pro(); - | m_data = test[3];

MOV A, #bnksym _test
pro(); MoV ADB, A
MOVI A, ADB: test+6
| m_data = n_test[3]; MOVW @RW3+-2, A

m_data = test[3]; U])JLINK

} RETP
.END

CALLP _pro
iiii m_data = n_test[3];
Bit int m_data = 0; ?gcbess using MOVW A, _n_test+6
-bit addressing MoVW @RW3+—2, A

Figure 10.2-1 "Specification of the _ near-type Qualifier (for a Large Model)" shows an
example of compiling a program that includes _ _near-type qualified variables and functions for
a large model. In this example, _ _near type qualification has been performed for the function
near_pro( ) and int-type array n_test[ ]. For compilation using a large model, the variables and
functions are accessed using 24-bit addressing. The _ _near-type qualified function near_pro(
), however, is called using 16-bit addressing. In addition, the element n_test[3] of the _ _near-
type qualified array is accessed using 16-bit addressing.
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Figure 10.2-2 Specification of the _ _far-type Qualifier (for a Small Model)

Specification

.SECTION  CCODE, CCDE, ALl G\=1
| Pemmmmem begi n_of _function
. GLCBAL _main

extern void _ _far far_pro(void);

Specification
of the _ _far
type modifier

extern void pro(void); —Mai n: LK o

[ farint f_test[4] ={1,234}; | N { it mdata = 0
Int mdata = 0;

int test[4] = {1,2,3,4}; MOVN A#gz A
Compile VoMW QB+ 2,

HEE Tar_pro();
-model small CALLP _far_pro
voi d nmai n(voi d) ) o pro();
{ CALL _pro
T mdata = T_test[3],
int mdata = 0; MV A, #bnksym _f_test
Access using MoV ADB, A

[ far_pro(): T  24-bit MOW A ADB _f_test+6
addressing MW QB+-2, A
pro(); R mdata = test[3],
MOVW A _test+6
| mdata = f_test[3]; MOWY @vB+2, A
mdata = test[3]; v U)\LII\K
} RET
. END

Figure 10.2-2 "Specification of the _ _far-type Qualifier (for a Small Model)" shows an example
of compiling a program that includes _ _far-type qualified variables and functions for a small
model. In this example, _ _far type qualification has been performed for the function far_pro()
and int-type array f_test[]. For compilation using a small model, the variables and functions are
accessed using 16-bit addressing. The _ far-type qualified function far_pro( ), however, is
called using 24-bit addressing. In addition, the element f_test[4] of the _ far-type qualified
array is accessed using 24-bit addressing.

As described above, the _ _near-type qualified variables and functions are accessed using 16-
bit addressing regardless of the memory model specified at compilation. In the same way, the
__far-type qualified variables and functions are accessed using 24-bit addressing regardless of
the memory model specified at compilation.

<Notes>

The _ _near type qualifier and _ _far-type qualifier cannot be specified for local variables.
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10.2.2

__lo Type Qualifier

This section describes the _ _io type qualifier, which is an fcc907 extended type
qualifier. The _ _io type qualifier is specified for a variable mapped into the 1/O area.

m Variables with _ _io Type Qualifier

88

The _ _io type qualifier is one of the type qualifiers specific to the fcc907.In the fcc907, the _ _io
type qualifier is specified for a variable mapped into the 1/0O area (addresses h’0000’ to h’00ff").
A variable qualified by the _ _io type qualifier is accessed via I/O addressing. In I/O addressing,
the addresses h’0000’ to h’00ff’ can be accessed. In I/O addressing, the user specifies only the
lower 8 bits of the address to be accessed because the high-order byte of the address is
automatically assumed to be h'00’. This format allows to express a memory address in one
byte. Because machine instructions using I/O addressing are generated when a variable
qualified by the _ _io type qualifier is accessed, the generated code is smaller than the code
generated for accessing a variable via normal addressing.

See CHAPTER 12 "NOTES ON DEFINING AND ACCESSING THE I/O AREA" for information
about mapping variables into the 1/O area.

Figure 10.2-3 _ _io Type Qualifier Specification and Access

Specification of
the __io type
qualifier
ll _ _io unsigned char IO_PDRO;l
2
3 unsigned char a;
4
5 wvoid func_io(void)
6 {
7 A variable qualified by the __io-type qualifier is accessed
8 using exclusive instructions for accessing I/O area.
:
10}
DA 000000 ----------- 9 .SECTION DATA, DATA, ALIGN=2
10 .GLOBAL _a
DA 000000 11 _a:
DA 000000 [1]B 12 .RES.B 1
13
€O 000000 —-—-=—---==-- 14 .SECTION CODE, CODE, ALIGN=1
15 e begin_of_ function
16 .GLOBAL _func_io
€O 000000 17 _func_io:
CO 000000 0800 18 LINK #0
CO 000002 540010 19 MOV I:_I0_PDRO, #16
CO 000005 71DF000010 20 MOV _a, #16
O _00000a 09 21 UNLINK
CO 00000B 67 22 RET
== 23 .END
Figure 10.2-3 "_ _io Type Qualifier Specification and Access" shows an example of _ _io type

qualifier specification and access.

In this example, the _ _io type qualifier is specified when variable 10_PDRO is defined. This
variable is accessed using I/O addressing.

When external variable a is accessed, code using 16-bit addressing is generated. When a
machine instructions are generated using 1/0O addressing when a variable qualified by the _ _io
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type qualifier is accessed, the generated code uses I/O addressing and is therefore smaller than
the code generated for variable access using normal addressing.

<Notes>

When defining variables with the _ _io type qualifier specified, variable areas are allocated in
the order defined. A variable such as a dummy must be defined for those locations where a
variable is not defined.

[Tip]
Softune C Checker:

The Softune C Checker outputs a warning if the _ _io type qualifier, a language extension, is
used in a definition and declaration. This check function is useful for creating programs for
which portability is important.
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10.2.3 _ _direct Type Qualifier

This section describes the _ _direct type qualifier, which is an fcc907 extended type

qualifier. The _ _direct type qualifier is specified for variables mapped into the direct
area.

m Variables with _ _direct Type Qualifier
The _ _direct type qualifier is one of the type qualifiers specific to the fcc907.

For the fcc907, _ _direct-type qualified variables are accessed using direct addressing. In direct
addressing, the address of a variable mapped in the direct area (page pointed to by the dtb
register) is accessed in eight bit units. As a result, a smaller code than that used when
accessing using normal addressing can be generated.

Figure 10.2-4 "Defining and Accessing a Variable Qualified Using the _ _direct Type Qualifier"
shows an example of defining and accessing a variable qualified using the _ _direct type
qualifier. In this example, the _ _direct type qualifier is specified when the variable d_data is
defined. See CHAPTER 13 "MAPPING VARIABLES QUALIFIED WITH THE TYPE QUALIFIER
__direct" for details on variables qualified using the _ _direct type qualifier.

Figure 10.2-4 Defining and Accessing a Variable Qualified Using the _ _direct Type Qualifier

Specification of
the _ _direct type
qualifier
- - DTB (data bank) DPR (direct page) Direct address
1|_ _direct unsigned char d data; f .
5 ‘ ‘ register register
, unstaned char e | Z—\AZ—\AZ—\AZ—\A| | BBBBBBBB | | cceeeecce |
5 wvoid func_direct (void)
6 |
7 | Anananaa | BBBBBEBB | Cccccccc |
8
o mSB LsB
10 }
\ \ 24-bit physical address
DI 000000 -—=-===——-—- <DINDATA> 9 .SECTION DIRDATA, DIR, ALIGN=2
10 .GLOBAL _d data
DI 000000 11 _d data:
DI 000000 [1]B 12 .RES.B 1
13
CO 000000 —-========—- <CODE 14 .SECTION CODE, CODE, ALIGN=1
15 m—————— begin_of function
16 .GLOBAL _func_direct
CO 000000 17 _func_direct:
€O 000000 0800 18 LINK #0
CO 000002 440010 19 MOV S: d data, #16
CO 000005 71DF000010 20 MOV “a, #16
CO 00000 09 21 UNLINK
CO 00000B 67 22 RET
[Tip]
Softune C Checker:
The Softune C Checker outputs a warning if the _ _direct type qualifier, a language

extension, is used in a definition or declaration. The fcc907 and fcc896 support the same
function for defining and accessing variables qualified by the _ _direct type qualifier. This
check function is useful for porting programs between the fcc907 and fcc896.
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10.2.4 _ _interrupt Type Qualifier

This section describes the _ _interrupt type qualifier, which an fcc907 extended type
qualifier. The _ _interrupt type qualifier is specified for an interrupt function.

m  Functions with _ _interrupt Type Qualifier
The _ _interrupt type qualifier is one of the fcc907-specific type qualifiers.
The fcc907 uses the _ _interrupt type qualifier for the specification of interrupt functions.

When an interrupt function qualified by the _ _interrupt type qualifier is called, it saves the
contents of work registers before performing any processing. When the function ends, it
restores all saved registers, returns control to the location where the interrupt occurred, and
resumes processing. Use of this type qualifier facilitates coding of interrupt functions in C.

Figure 10.2-5 " _interrupt Type Qualifier Specification" shows an example of coding an
interrupt function qualified by the _ _interrupt type qualifier. In this example, when an interrupt
occurs and the interrupt function int_func( ) is executed, register RWO0 is saved on the stack.
Next, registers RO and R1 are saved on the stack.

When the interrupt terminates, the function restores the saved registers and issues the reti
instruction. The reti instruction restores the values of the PC and PS saved to the stack and
returns control to the location where the interrupt occurred.

Figure 10.2-5 _ _interrupt Type Qualifier Specification

The _ _interrupt type qualifier is used for defining
or accessing an interrupt processing function.
Specification of
the _ _interrupt
° type qualifier = begin of function
o .GLOBAL _timer_int
[ /A [ Timer_1int:
I_ _interrupt void timer_int(void) [t LINK #2
. ! PUSHW (RWO)
o {
int i; Y __set_il(16);
_ _set_il(1€); When the function starts, MoV ILM, #16
of all registers used in Piii _DbIO);
_ DIO; the function are saved. AND CCR, #191
. Only RWO is saved for .
. this function. °
° L]
° .
. L]
. L]
o .
_ _EIQ; i _EIO;
[ e Y OR CCR, #64
iiii }
\\ POPW (RWO)
I UNLINK
When the function terminates, all saved registers RETI
are restored and the reti instruction is issued. -END

See CHAPTER 14 "CREATING AND REGISTERING INTERRUPT FUNCTIONS" for
information about functions qualified by the _ _interrupt type qualifier.

[Tip]
Softune C Checker:

The Softune C Checker outputs a warning if the _ _interrupt type qualifier, a language
extension, is used in a definition or declaration. The fcc907 supports the same function for
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coding interrupt functions qualified by the _ _interrupt-type as the fcc896 and fcc911. This
check function is useful for porting programs between the fcc896 or fcc911 and fcc896.
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___nosavereg Type Qualifier

10.2 Extended Type Qualifiers

This section describes the _ _nosavereg type qualifier, which an fcc907 extended type
qgualifier. The _ _nosavereg type qualifier is specified for an interrupt function together
with the _ _interrupt type qualifier.

m Functions with _ _nosavereg Type Qualifier

The _ _nosavereg type qualifier is one of the type qualifiers specific to the fcc907.

In the fcc907, the _ _nosavereg type qualifier is specified for an interrupt function together with
the _ _interrupt type qualifier.

When an interrupt function qualified using the _ _nosaverreg type qualifier is called, the interrupt
function executes processing without saving registers. This applies even if registers to be used
in the function are present. When the function terminates, it issues the reti instruction and
processing resumes at the location where the interrupt occurred. Because the #pragma
register/noregister for switching the register banks can also be used at the same time, high-
speed interrupt processing is enabled.

Figure 10.2-6 " _nosavereg Type Qualifier Specification” shows an example of coding an
interrupt function with the _ _nosavereg type qualifier specified. In this example, the function is
executed without registers being saved when the interrupt function timer_int( ) is executed. The
RWO register is used in this function.

When the interrupt terminates, the function restores the saved registers and issues the reti
instruction. The reti instruction restores the values of the PC and PS saved on the stack and
returns control to the location where the interrupt occurred.

Figure 10.2-6 _ _nosavereg Type Qualifier Specification

When the ___nosavereg type qualifier is used to define or access an
interrupt processing function, the __interrupt type qualifier can be
used at the same time.

Specification of
the __nosavereg

. type qualifier
: Fmmmm Pegin_of_ function
.GLOBAL _timer_int
[C _nosavereg _ _ interrupt voxdt:.mer_xnt(vo:.dg _timer_int:
{ LINK #2
int i; ; ; PP {
When the function starts, no registers i set 11(16);
set il(16); aresaved even if registers to be used MOV 1LM, #16
- - in the function are present. iiis DI();
DI(); RWO is used for this function. AND CCR, #191

o
L]
L]
L]
L]
L]
L]

__EI(Q); iiii __EIO;

L ] OR CCR, #64
\ Pl }
\ UNLINK
RETI
When the function terminates, all saved registers .END

are restored and the reti instruction is issued.

See CHAPTER 14 "CREATING AND REGISTERING INTERRUPT
information about functions qualified by the _ _nosavereg type qualifier.

FUNCTIONS" for
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[Tip]
Softune C Checker:

The Softune C Checker outputs a warning if the _ _nosavereg type qualifier, a language
extension, is used in a definition or declaration. The fcc907 supports the same function for
coding interrupt functions qualified by the _ _nosavereg type qualifier as the fcc896. This
check function is useful for porting programs between the fcc907 and fcc896.
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10.3 Extended Functions Using #pragma

This section describes #pragma as used in the fcc907.
The fcc907 provides the following eight #pragma types as extended functions:
* asm/endasm

e inline
* section
¢ ilm/noilm

* register/noregister
» ssb/nossb

* except/noexcept
* intvect/defvect

m Extended Functions Using #pragma

The fcc907 provides the following #pragma functions:

(’asm/emdasm
inline
section
ilm/noim
fccO07#pragma < register/noregister
ssb/nossb
except/noexcept

intvect/defvect

A control line that begins with #pragma specifies operations specific to the fcc907. Sections
10.3.1 "Inserting Assembler Programs Using #pragma asm/endasm" to 10.3.8 "Generating an
Interrupt Vector Table Using #pragma intvect/defvect" briefly describe the #pragma functions
and provide notes on their use.
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10.3.1 Inserting Assembler Programs Using #pragma asm/
endasm

This section describes #pragma asm/endasm.
The #pragma asm/endasm can be used to code assembly instructions in C programs.

m Inserting Assembler Programs Using #pragma asm/endasm

The #pragma asm directive specifies the start of insertion of an assembler program.

#pragma asm

The #pragma endasm directive specifies the end of insertion of an assembler program.

#pragma endasm

C programs cannot directly set the contents of CPU registers. Moreover, some operations in C
programs cannot be executed fast enough. To execute such operations, you can use #pragma
asm/endasm to include Assembler programs into the C program.

Figure 10.3-1 "Coding #pragma asm/endasm" shows an example of coding #pragma asm/
endasm. At the location where #pragma asm/endasm are used, Assembler instructions are
expanded.

See CHAPTER 11 "NOTES ON ASSEMBLER PROGRAM IN C PROGRAMS" for information
about including Assembler modules using #pragma asm/endasm.

Figure 10.3-1 Coding #pragma asm/endasm

.PROGRAM p_asm
.LIBRARY "1ib907s.lib"
void main (void)
{ .SECTION CODE, CODE, ALIGN=1
i = jommmm—— begin_of function
?“E flag = 0x01 JGLOBAT  main
int 1; main
LINK #2
#pragma asm MOVN A, #1
The assembler executes MOVN A, #0 MOV @RW3+-2, A
the program assuming that MOV @RW3+-2, A ggm i?éwﬁ?fz N
the character string coded L_24: L 24: !
starting in column 2 is an MOVW A, @Rgg“z - MOVH A, @RW3+-2
instruction. A tab code or —_] S i cMPW A, #100
null character string must > RH34-2 BGE L_23
included h INCW @RW3+- INCW @RW3+-4
be included at the
. ; BRA L724 INCW QRW3+-2
beginning of the character L 23: BRA 1, 24
string. #pragma endasm L 23: -
¥ UNLINK
RET
.END
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10.3.2 Specifying Inline Expansion Using #pragma inline

This section describes inline expansion using #pragma inline. The #pragma inline
directive is used to specify a function that is to be expanded.

Inline Expansion Using #pragma inline

The #pragma inline directive is used to specify a function that is to be expanded. The specified
function is expanded in line during compilation. After this specification, the specified function is

expanded in line whenever it is called.

#pragma inline name-of-function-expanded-inline

Figure 10.3-2 "Inline Expansion of a Function Using #pragma inline" shows an example of using

#pragma inline.

In this example, inline expansion of the function checksum is specified on line 16. Therefore,

when the function proc_block01() is called, function checksum will be expanded in line.

Figure 10.3-2 Inline Expansion of a Function Using #pragma inline

extern char block01[10];
extern char block02[20];

int checksum(char *data, int length)
(
int res; Code for the entire function
int i is generated because the
. call is an ordinary call.

© 9o v elw e

©

res =

i
o

for(i = 0; i < length; i++){

i
i

res += (int)*data;
}
return(res & 0x00ff);

o
w N

il
=

}

[
w

i
o

#pragma inline checksum <=0f inline

i
-

expansion

-
©

int proc_block 01 (void)

Specification

Inline
expansion

int proc_block 01 (void)
{
int temp;

Because inline expansion is
. specified, the code for function
. checksum() is embedded.

temp =

-
0

{
int temp;

INEESIENY
NP o

temp = checksum(block01l, 10);
return (temp) ;

}

[SINY
W

>

return (temp) ;

}

See CHAPTER 7 "REDUCING FUNCTION CALLS BY EXANDING FUNCTIONS IN LINE" for
information about expanding functions in line.

<Notes>

When inline expansion is specified using #pragma inline, use the -O option to specify
optimization during compilation. If optimization if not specified, inline expansion will not be

executed.

97



CHAPTER 10 WHAT ARE LANGUAGE EXTENSIONS?

[Tip]
For the fcc907:

The following option can be used to specify the function to be expanded in line during
compilation.

-x function-name option

Use the following option to specify the number of lines of the function to be expanded in line
during compilation.

-xauto size option

Optimization must be specified using the -O option.
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10.3.3 Using #pragma section to Change Section Names and
Specify Mapping Address

This section briefly describes how to use #pragma section to change section names
and section attributes and to specify mapping addresses.

m Using #pragma section to Change Section Names and Specify Mapping Addresses

The #pragma section directive can change the default section names output by the fcc907 to
user-specified section names. In addition, #pragma section can change the section attributes.

#pragma section default-section-name [=new-section-name][, attr=attribute][, locate=mapping-address]

The fcc907 can specify the sections listed in Table 10.3-1 "Default Sections That Can Be
Specified Using #pragma section" for the default section, and can specify the section attributes
listed in Table 10.3-2 "Default Section Attributes That Can Be Specified Using #pragma section”
for "attr."

For the mapping address, specify the beginning address of where the specified section is to be
mapped.

Table 10.3-1 Default Sections That Can Be Specified Using #pragma section

Section name Section type

CODE Code area

INIT Area for variables that are initialized

DCONST Initial value area for variables with the initial value specified

CONST Area for variables qualified by the const type qualifier

CINIT RAM area for const-type qualified variables when a CPU that does not
have the mirror ROM function is used

DATA Area for variables that are not initialized

DIRINIT Area for variables qualified by the_ _direct type qualifier with initial value
specified

DIRCONST nitial value area for _ _direct-type qualified variables with initial value
specified

DIRDATA Area for variables qualified by the_ _direct type qualifier without initial
value specified

10 Area for variables qualified by the _ _io type qualifier

INTVECT Interrupt vector table area

DTRANS Data table for initializing external variables

DCLEAR

99



CHAPTER 10 WHAT ARE LANGUAGE EXTENSIONS?

100

Table 10.3-2 Default Section Attributes That Can Be Specified Using #pragma section

Section attribute name Explanation
CODE Program code area
DATA Area for variables that are not initialized
CONST Area for variables whose specified initial value does not change
COMMON Shared variables and shared area
STACK Stack area
10 Input-output port area
IOCOMMON Input-output area that can be shared with the linker
DIR Direct access area
DIRCONST Direct access area in which initial values that do not change are
mapped
DIRCOMMON Direct access area that can be shared with the linker

Figure 10.3-3 "Changing the Output Section Using #pragma section" shows an example of
using #pragma section. In this example, the default I1/O section is changed to the IO_PDR
section. In addition, the IO0_PDR section is mapped into the area beginning at address
0x000000. As a result, the variable qualified by the _ _io type qualifier is output to the I0_PDR
section allocated to the area beginning with address 0x000000.

Figure 10.3-3 Changing the Output Section Using #pragma section

#pragma section IO=IO PDR, locate=0x000000 -SECTION IO _PDR, IO, LOCATE=H'0
- .GLOBAL IO PDRO
I0_PDRO:
_ _io unsigned char IO_PDRO; ——— - _RES.B 1
_ _1o unsigned char IO_PDRI; .GLOBAL _TI0_DDRO
_I0_DDRO:
unsigned char a = 0x0f; -RES.B 1
unsigned char b = 0x01; .SECTION DCONST, CONST, ALIGN=2
.DATA.B 1
void func_io (void) .DATA.B 15
{
h testl, test2; .SECTION INIT, DATA, ALIGN=2
char testi,testes .GLOBAL b
_b:
testl = a + b; .RES.B 1
.GLOBAL _a
- i _a:
) test2 = IO PDRO + IO PDRI1; [ .
.SECTION CODE, CODE, ALIGN=1

The default I-O section is changed to the IO_PDR section using #pragma section.
Address 0x000000 is specified in the locate operand as the mapping address of the I0_PDR section.

[Tip]
For the fcc907:

The following option can be used to specify the same operation as that of #pragma section
during compilation.

-s default-section-name=new-section-name [, attribute][, mapping-address] option




10.3 Extended Functions Using #pragma

10.3.4 Specifying the Interrupt Level Using #pragma ilm/noilm

This section describes #pragma ilm/noilm.
The #pragma ilm/noilm directive is used to set the function interrupt level.

m  Specifying the Interrupt Level Using #pragma ilm/noilm

The #pragma ilm directive specifies the function interrupt level. It is used to specify the interrupt
level of each function.

#pragma ilm (interrupt-level-number)

The #pragma noilm releases the switched interrupt level.

#pragma noilm

Figure 10.3-4 Using #pragma ilm/noilm to Set Function Interrupt Levels

Zero is specified as the interrupt level of function p_ilm1().
As a result, the interrupt level is 0 during execution of
function p_ilm1().

i1 #pragma ilm(0) /
_p_ilml:
3 int p ilml(int a, int b) | A > MoV ILM, #0
4 LINK #2
5 int ¢ = 0; P {
6 iiii int ¢ = 0;
7 if(a > b) MOVN A, #0
8 c=a-b; Range of interrupt
9 else level 0
10 c=b - a; specification
11
12 return(c); l
13} . . .
17 | The interrupt level specified using #pragma
15 Hpragma noiim  d—— | iim(0) is released.
16
17T oRg SUb iTmi (Tong &, 1ong bii L —F sub ilmi:
18 —_— | LINK 44
19 long add; iiii {
20
21 add = a + b;
22
23 return (add) ;
24

The function interrupt level after #pragma noilm is not explicitly specified.
The interrupt level of function sub_ilm1() depends on the interrupt level of the function
that called function sub_ilm1().

Figure 10.3-4 "Using #pragma ilm/noilm to Set Function Interrupt Levels" shows an example of
a function that uses #pragma ilm.

In this example, 0 is specified as the interrupt level when function p_ilm1( ) on line 1 is
executed. The specification of #pragma noilm on line 15 releases the interrupt level specified
using #pragma ilm(0). As a result of the release, the interrupt level changes to 0 when function
p_ilm1() is called, but it does not change when function sub_ilm1() is called.

The interrupt level of function sub_ilm1( ) depends on the state when function sub_ilm1( ) is
called. When function sub_ilm1( ) is executed, processing is executed using the interrupt level
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of the function that called function sub_ilm1().

As shown in Figure 10.3-5 "Using #pragma ilm to Set the Interrupt Level for Each Function",
when creating a system in which the interrupt level of a function changes, use #pragma ilm to
specify the interrupt level.

The minimum unit for which #pragma ilm/noilm can specify the interrupt level is a single
function. To change the interrupt level within a function, use the built-in function _ _set_il().

Figure 10.3-5 Using #pragma ilm to Set the Interrupt Level for Each Function

Zero is specified as the interrupt level of function p_ilm1().
As a result, the interrupt level is 0 during execution of
function p_ilm1().

#pragma ilm(0) /

-

2
3 int p ilm2(int a, int b) A o ilmz2:
Py o MoV IIM, #0
e mee s 0 LINK 42
S i {
7 if(a > b) i o
i SoeY Range of level MovN s, 50
i . ificati MOVW @RW3+-2, A
i10 A N 0 specification
i1
112 return(c) ;
as oy i /

F ] Specifies 1 as the interrupt level of function
B e e e sub_ilm2( ') using #pragma ilm(1).

18 ¢

19 iongaad;
20 \ _sub_ilm2:
21 add = a + b; > MoV ILM, #1
22 LINK #4
23 return (add) ; iiii {
24y
<Notes>

Code #pragma ilm/noilm outside the function. The minimum unit for which the interrupt level
can be changed using #pragma ilm/noilm is a function. To temporarily change the interrupt
level during execution of a function, use the built-in function _ _set_il().

Be aware that #pragma noilm only releases the specified #pragma ilm. It does not include a
function for returning the interrupt level to what it was before #pragma ilm was specified.



10.3 Extended Functions Using #pragma

10.3.5 Setting the Register Bank Using #pragma register/
noregister

This section describes #pragma register/noregister.
The #pragma register/noregister directive is used to specify the register bank used by
a function.

m Setting the Register Bank Using #pragma register/noregister

The #pragma register directive specifies the register bank used. This specification enables to
change the register bank used for a function.

#pragma register (number-of-register-bank-used)

The #pragma noregister directive releases the specification of the register bank.

#pragma noregister

Figure 10.3-6 Using #pragma register/noregister for a Function

Specifies 3 as the register bank used by function p_reg1().

1 #pragma register(3) &

g e . _p_regl:

3 int p_regl(int a, int b) A : > MoV RP, #3
P4 | —_— LINK #2
| 5 int ¢ = 0; H piii {
HS ] Piii int ¢ = 0;

7 if(a > b) MOVN A, #0
H 8 c=a - b; Range ofregister MOVW QRW3+-2, A
f 9 clse bank 3 :
1‘1’ c=b-a; specification
0l . AR (06 l, i | Releases the register bank specification
v - set with #pragma register(3).
i15 #pragma noregister
e R

Pt gttt et etk sub_regl:

17 long sub_regl(long a, long b): — —
8 (. o LINK #a

19 long add; e ¢

20

21 add = a + b

22

23 return (add) ;

24 }

The register bank used after #pragma noregister and subsequent registers are not specified.
The register bank used by function sub_regl( ) depends on the function that called function
sub_regl().

Figure 10.3-6 "Using #pragma register/noregister for a Function" shows an example of using
#pragma register for a function. In this example, the register bank that will be used during
execution of function p_regl( )is set to 3 on line 1. On line 15, #pragma noregister releases the
register bank specification set by #pragma register(3). As a result of the release, the register
bank switches to 3 when function p_regl( ) is called, but does not change when function
sub_regl() is called.
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The register bank used by function sub_reg1( ) depends on the status when function
sub_regl() is called:

When function sub_regl( ) is executed, the register bank used by the function that called
function sub_reg1() is used.

Note that #pragma noregister only cancels the specified #pragma register. It does not have a
function for returning to the register bank that was being used before #pragma register was
specified.

As shown in Figure 10.3-7 "Using #pragma register to Specify the Register Bank for a
Function”, when creating a system in which the used register bank changes for a function, use
#pragma register to specify the register bank used for the function.

Figure 10.3-7 Using #pragma register to Specify the Register Bank for a Function

Register bank three is specified for use
by function p_reg2( ).

: 1 #pragma register(3) Vgl
i e 2 (int e T A _p_regl:
; int p_reg2(int a, in ) MOV RP, #3
Lo > LINK #2
5 int ¢ = 0; '/ {
6 PP )
PP int ¢ = 0;
7 if(a > b) .
8 s Range of register MOVN A, #0
9 else bank_f:_% ; MOV @RW3+-2, A
10 c=b - a; specification
11
12 return(c) ;
13 } v

|_— Register bank four is specified for use

is #pragma noregister / by function sub_reg2().
i17 #pragma register (4) 4

119 long sub_reg2(long a, long b) E)\ sub reg2:

120 1 i > MoV RP, #4
21 long add; LINK #4

22 Range of register Iy {

23 add = a + b; bank 4

24 specification

25 return (add) ;

26} +

28 #pragma noregister

<Notes>

Code #pragma register/noregister outside the function. The minimum unit for which the
register bank can be specified using #pragma register/noregister is a function. The register
bank cannot be changed using #pragma register/noregister during execution of a function.

Be aware that #pragma register only releases the specified #pragma register. It does not
include a function for returning to the register bank that was being used before #pragma
register was specified.
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10.3.6 Setting Use of the System Bank Using #pragma ssb/
nossb

This section describes #pragma ssb/nossb.
The function with #pragma ssb/nossb specified accesses the system stack when a
stack is used.

m  Accessing the System Stack Using #pragma ssb/nossb

Specifying #pragma ssb sets the system stack as the stack to be accessed by a function. When
a stack is accessed, this specification loads the value of the system stack bank register (SSB)
and then generates a code for accessing the stack.

#pragma ssb

Specifying #pragma nossb cancels the specification that allows the system stack to be used.

#pragma nossb

Figure 10.3-8 Using #pragma ssb/nossb to Set and Allow the System Bank to Be Used

jom————— begin of function
.GLOBAL — p ssb
i ’p*SSb LINK ?17
Specifies that the system stack be used. PL{JSHW "RWO, RW1)
L A
1 [ #pragma ssb | For a compact model or large -7 MOVEA A%{ gruz+-10
2 model, a variable is accessed using |L__ MOVL, Grass 4,
3 | void p_ssb(void) 24-bit addressing. When a stackis | """’ MoV 2o #20°
4 ¢ accessed, specifying #pragmassb | ..., Movw - SRWSE-10, A
5 int a, b, ¢ loads the value of the system stack MOVL R, eRy3+-%
MOV rfo, &
6 int *p; - bank and then generates a code for MOV AWO@RLO
i MOV Rl A
7 accessing the stack. MV RW0p b
: v gl A
MOVW A, RWO
9 a = 20; MOVI @kw3+-8, A
10 b =c¢ = *p; sy (RWO, RW1)
11 UNLINK
12 RET
13 __Pra nossb Cancels the specification that allows the
11 gna system stack to be used. P— begin of function
A A .GLOBAL — sub ssb
15| void sub ssb(void) sub_ ssb: - -
16 { - - - LINK #10
PUSHW (RWO, RW1)
17 int a, b, ¢ PP {
P p = &ay
18 int *p MOV A, USB
19 > MOVEA A, @RW3+-10
— / MOVL @RW3+-4, A
21 a = 207 When a stack is accessed, specifying | MoV A, 420
' MOV kw3+-10, A
22 b =c = *p; #pragma nossb loads the value of the | ;;;; grusi-l fpi
23] ) user stack bank (USB) and then MovE BpERU3+=
generates a code for accessing the povi ZEWO@RTZSO
stack. MOVIW A, RWO
MOVIW @RW3+-6, A
MOVW
MOV @RW3+-8, A
PW (RWO,RW1)
UNLINK
ET
END

Figure 10.3-8 "Using #pragma ssb/nossb to Set and Release Use of the System Bank" shows
an example of a variable using #pragma ssh/nossb. For a compact model or large model, the
variable is accessed using 24-bit addressing. For normal stack access, the user stack is
accessed using 24-bit addressing. However, if an interrupt function uses the system stack to
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execute processing, the system stack must be accessed using 24-bit addressing. In such
cases, #pragma ssb/nossb is specified to load the value of the SSB register and generate a
code for accessing the stack when the stack is accessed.

In this example, #pragma ssb is specified on line 1 to specify use of the system stack when the
function p_ssb( ) is executed. On line 13, #pragma nossb is specified to cancel the
specification, that allows the system stack to be used, given by #pragma ssb. Then, when the
function p_ssb( ) is called and the stack accessed, the SSB register value will be loaded and a
code for accessing the stack is generated. If the function sub_ssb( ) is called, however, the
value of the user stack bank register (USB register) will be loaded and a code for accessing the
stack is generated.

<Notes>

When #pragma ssb/nossb is specified to generate a code for accessing the system stack,
specify a compact or a large model at compilation. If a compact model or large model is not
specified, a code for 16-bit addressing will be generated.



10.3 Extended Functions Using #pragma

10.3.7 Setting the Stack Bank Automatic Identification Function
Using #pragma except/noexcept

This section describes #pragma except/noexcept.
A function with #pragma except/noexcept specified loads the value of the stack being
used when the stack is accessed and then accesses the stack.

m Accessing the System Stack Using #pragma except/noexcept

Specifying #pragma except notifies the compiler that the function is operating using the system
stack or user stack. This specification identifies the status of the stack being used when the
stack is accessed, loads the value of the corresponding stack bank, and then generates a code
for accessing the stack.

#pragma except

Specifying #pragma noexcept cancels the specification that allows the stack bank automatic
identification function to be used.

#pragma noexcept

Figure 10.3-9 Using #pragma except/noexcept to Set and Release the Stack Bank Automatic
Identification Function

Jemm———— begéﬂoggnfunctlon .
Y L e . . . exce
Specifies the stack bank automatic identification function. _p_except: o ﬁa P
P[(JSHW (RWO, RW1)
1 | #pragma except PP D = &a;
For a compact or a large model, a GALLP LOADSEE
2 . . N H > MOVEA Af{ gRW3+ 10
5[ void p except (void) variable is accessed using 24-bit MOVL @RW3+-4, A
i p_excep addressing. When a stack is PP vov 2 =,20
p . — accessed, specifying #pragma MOVW @RW3¥-10, A
. ntoa, by except loads the value of the stack Piii MOV, R =3+ %
int *p; | bank (USB or SSB) being used and VovL ;RxLO@RLo
g “// then generates a code for MOV RWOé A
i MOVW &, R0
. — accessing the stack. v Baa s A
MOVI A,
10 b =c = *p; . MOVW @RW3+-8, A
1101} SéEvIvNK (RWO, RW1)
12 Cancels the specification that allows the ET
13 [ #pragma noexcept stack bank automatic identification
14 function to be used. —— 5 TFonor
15| void sub_except (void) ’ egéEOgAt uncségnexcept
16| { sub_except: - -
. - = LINK #10
17 int a, b, c; PUSHW (RWO, RW1)
18 int *p; pii { —
19 > A, USB
20 (=52 4 MOVEA By SR13+-10
21 a = 20; When a stack is accessed, specifying Piii Moy a :#38;
22 b =c = *p; #pragma noexcept loads the value of MV @Rw3¥-10, A
23|} the user stack bank (USB) and then piii MOV, R eSu3e %
generates a code for accessing the MOVL rlo, &
Stack MOV A, GRLO
. MOVW RWO, A
MOV A, RWO
MoV @RW3+-6, A
MOVI A, R
M?VW @RW3+-8, A
POPW (RWO, RW1)
UNLINK
ET
END

Figure 10.3-9 "Using #pragma except/noexcept to Set and Release the Stack Bank Automatic
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Identification Function" shows an example of a variable using #pragma except/noexcept. For a
compact or a large model, the variable is accessed using 24-bit addressing. For normal stack
access, the user stack bank register (USB register) is used to access the user stack using 24-bit
addressing. However, for an exception handler created using REALOS, the stack that is
accessed depends on the activation status. In such cases, #pragma except/noexcept is
specified to load the value of the stack bank register being used and generate a code for
accessing the stack when the stack is accessed.

In this example, #pragma except is specified on line 1. This specification generates a code for
automatically identifying the stack bank when the function p_except( ) is executed. On line 13,
#pragma noexcept is specified to release specification of the stack bank automatic identification
function specified by #pragma except. Then, when the function p_except( ) is called, the status
of the stack being used is identified. As a result, the value of the stack bank being used will be
loaded and a code for accessing the stack is generated. If the function sub_except( ) is called,
however, the value of the user stack bank register (USB register) will be loaded and a code for
accessing the stack is generated.

<Notes>

When #pragma except/noexcept is specified to use the automatic identification function for
the stack being used, specify a compact model or large model at compilation to generate
code for accessing the stack using 24-bit addressing. If a compact or a large model is not
specified, a code for 16-bit addressing will be generated.



10.3.8 Generating an Interrupt Vector Table Using #pragma

Intvect/defvect

10.3 Extended Functions Using #pragma

This section describes #pragma intvect/defvect.

The #pragma intvect directive is used to generate an interrupt vector table.

m  Generating Interrupt Vector Tables Using #pragma intvect/defvect

The #pragma intvect directive generates an interrupt vector table for setting an interrupt

function.

#pragma intvect interrupt-function-name vector-number

The #pragma defvect directive specifies the function to be mapped to an interrupt vector that
has not been specified using #pragma intvect.

#pragma defvect interrupt-function-name

Figure 10.3-10 Example of Using #pragma intvect

1 extern _ _interrupt void _start(void);

2

3 extern _ _interrupt void timer_int(void);
4

5 |#pragma intvect _start 8

6

7 |#pragma intvect timer int 29

Startup routine start() is set for interrupt vector number
8 and interrupt function timer_int() is set for interrupt
vector number 29

. PROGRAM
.LIBRARY

.SECTION

intvect
"1ib907s.1lib"

INTVECT, DATA,

LOCATE=H'FFFF88

.ORG H'FFFF88
.DATA.L

timer int

5
*

.ORG H'FFFFDC
.DATA.E
.DATA.B

_ _start
0

.GLOBAL
.GLOBAL
.END

_timer_ int

_ _start

Figure 10.3-10 "Example of Using #pragma intvect" shows an example of using #pragma

intvect.

In this example, startup routine start( ) is registered in interrupt vector number 8 and 16-bit
reload timer interrupt processing function timer_int( ) is registered in interrupt vector number 29.

Zeros are set for vectors other than vector numbers 8 and 29 of the INTVECT section.
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Figure 10.3-11 Example of Using #pragma defvect

% extern _ _interrupt void _start (void);

3 extern _ _interrupt void timer_ int (void);

g extern _ _interrupt void dummy(void);

S 7
8

#pragma intvect _start 8 0
9 /
10 #pragma intvect timer int 29 é
11

. PROGRAMdefvect
.LIBRARY"1ib907s.1ib"

.SECTIONINTVECT, DATA,

LOCATE=H'FFFC00

.DATAB.L226, _dummy

.DATA.L timer int

.DATAB.L20, _dummy

.DATA.E __ start
.DATA.B 0

12| #pragma defvect dummy =

The default interrupt function dummy( ) is set for an interrupt
vector that has not been specified using #pragma intvect.

.DATAB.LS, _dummy

.GLOBAL _dummy
.GLOBAL _timer_int
.GLOBAL __ start
.END

Figure 10.3-11 "Example of Using #pragma defvect" shows an example of using #pragma
defvect. In this example, interrupt function dummy( ) has been registered for all vector numbers

except 8 and 29, which were specified using #pragma intvect.

See CHAPTER 14 "CREATING AND REGISTERING

information about the interrupt functions.

<Notes>

Note the following points when using #pragma intvect/defvect to define interrupt vector

tables.

Interrupt vector tables defined using #pragma intvect/defvect is output to an independent
section named INTVECT mapped into the area beginning with address h'fffc00'.
#pragma defvect is executed, the specified interrupt function is set for all interrupt vectors

INTERRUPT FUNCTIONS"

that have not been specified using #pragma intvect in the INTVECT section.

When #pragma intvect/defvect is specified, define all interrupt vector tables in the same

compile unit.




10.4 Interrupt-Related Built-in Functions

10.4 Interrupt-Related Built-in Functions

This section briefly describes the built-in functions of the fcc907.
The fcc907 provides the following three built-in functions:

e DI()
e _EI()
e setl()

m Using the Interrupt-Related Built-in Functions to Add Functions

The fcc907 provides the following built-in functions related to interrupt processing:

DI ()

fcc907 built-in functions _ _EI()

_ set 11()

Sections 10.4.1 "Disabling Interrupts Using _ _DI( )" to 10.4.3 "Setting the Interrupt Level Using
_ _set_il( )" provides brief notes on using each of the built-in functions.
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10.4.1 Disabling Interrupts Using __DI()

This section describes _ _DI( ), which is used to disable interrupts.
__DI() is used to disable interrupts in the entire system.

m Disabling Interrupts Using _ _DI()

The _ _DI( ) directive expands code that masks interrupts, thereby disabling interrupts in the
entire system.

void _ _DI(void);

Figure 10.4-1 "Using _ _DI() to Disable System Interrupts" shows an example of using _ _DI()
to code a function that disables system interrupts. See CHAPTER 14 "CREATING AND
REGISTERING INTERRUPT FUNCTIONS".

Figure 10.4-1 Using _ _DI() to Disable System Interrupts

_ _interrupt void int_func (void)
{

int i;

_ _set_il(0);
Interrupts are disabled. Piii ap ECiDI#(fl)QZ;I.
> .
_ _DI(); —
L]
L]
. .
4 Interrupt-disabled The _ _DI() directive outputs code that disables interrupts.
. state Interrupts are thus disabled until they are enabled again
. l using __EI().
L[]

[ _ RI(); ]

Interrupts are enabled.
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10.4.2 Enabling Interrupts Using _ _EI()

This section describes _ _EI( ), which is used to enable interrupts.
The _ _EI() directive is therefore used to enable interrupts in the entire system.

m  Enabling Interrupts Using __EI()

The _ _EI() directive expands code that releases masking of interrupts. The _ _EI() directive is
therefore used to enable interrupts for the entire system.

void _ _El(void);

Figure 10.4-2 "Using _ _EI() to Enable System Interrupts" shows an example of using _ _EI()
to code a function that enables system interrupts.

See CHAPTER 14 "CREATING AND REGISTERING INTERRUPT FUNCTIONS" for
information about interrupt processing.

Figure 10.4-2 Using _ _EI() to Enable System Interrupts

_ _interrupt void int_func(void)

{
int i;
_ _set_1il1(0);
Interrupts are disabled.

DI ; . .
= DTt | The _ _EI() directive outputs code that

: enables interrupts.

: Interrupt- Thereafter, interrupts are enabled.

° disabled

. state

° piii _ EI();

: //7 OR CCR, #64
_ _EI(); -1

Interrupts are enabled.
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10.4.3 Setting the Interrupt Level Using _ _set_il()

This section briefly describes how to set the interrupt level using _ _set_il().
The _ _set il() directive is used to change the interrupt level of the entire system
during execution of a function.

m Setting the Interrupt Level Using __set il()

The _ _set il() directive expands code that sets the interrupt level. You can therefore use this
directive to determine the allowed interrupt level for the entire system.

void _ _set il(interrupt-level);

Figure 10.4-3 "Using _ _set il() to Set the System Interrupt Level" shows an example of using
_ _set_il() to code a function that sets the interrupt level for the entire system.

See CHAPTER 14 "CREATING AND REGISTERING INTERRUPT FUNCTIONS" for
information about interrupt processing.

Figure 10.4-3 Using _ _set il() to Set the System Interrupt Level

_ _interrupt void int_func (void)

{ HE _set_1i1(0);

int 1; MoV LM, #0

_ _set_il (0); — >

_DI( );

The _ _set_il(0) sets the interrupt level to 0.
Thereatfter, the interrupt level during execution of an
interrupt function is set to 0.

BEIC );
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10.5 Other Built-in Functions

This section briefly describes the other built-in functions provided by the fcc907.
The fcc907 provides the following seven built-in functions:

__wait_nop()

_ _mul()

__mulu()

_ _div()

__divu()

_ _mod()

__modu()

Other Additional Built-in Functions

The fcc907 provides the following built-in functions not related to interrupt processing:

¢ _wait_nop()

__mul()
_ _mulu()
fcc907 built-in functions < _ _div()
_ _divu()
__mod()
\_ —_modu()

Sections 10.5.1 "Outputting a nop Instruction Using _ _wait_nop( )" to 10.5.7 "Unsigned 32-Bit/
Unsigned 16-Bit Remainder Calculation Using _ _modu( )" provides brief notes on using each of
the built-in functions.
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10.5.1 Outputting a Nop Instruction Using __wait_nop()

This section briefly describes the expansion of a nop instruction using _ _wait_nop( ).
The __wait_nop() is used to expand a single nop instruction at the location of the
function call.

m Outputting a nop Instruction Using _ _wait_nop()

The _ _wait_nop( ) expands one nop instruction at the location of the function call. Code the _
_wait_nop( ) at which a nop instruction is required.

void _ _wait_nop(void);

Figure 10.5-1 "Using _ _wait_nop( ) to Output a Nop Instruction” shows an example of coding a
function that uses _ _wait_nop().

Figure 10.5-1 Using _ _wait_nop( ) to Output a Nop Instruction

.PROGRAM wait_nop
.LIBRARY "1ib907s.1lib"

void wait (void)
{ .SECTION CODE, CODE, ALIGN=1
;=————=-] begin_of_function

_ _wait_nop( ) i .GLOBAL _wait
\ _wait:
LINK #0
} Piii {
.;I;;; _ _wailt nop();
One nop instruction is output at the location

}
UNLINK
RET

.END

of the function call.

<Notes>

The fcc907 outputs one nop instruction at the location where _ _wait_nop( ) is coded. Code
the _ _wait_nop() at which a nop instruction is required.

If the _ _asm statement is used to code a nop instruction, the various optimization operations
can be suppressed.

Coding _ _wait_nop( ) can control the timing so as to minimize the side effects of
optimization.
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10.5.2 Signed 16-Bit Multiplication Using _ _mul()

This section briefly describes signed 16-bit multiplication using _ _mul().
The _ _mul() is used to return the result of (signed 16 bits) x (signed 16 bits)
operations as signed 32 bits.

m  Signed 16-Bit Multiplication Using __mul()

The _ _mul( ) executes multiplication operations of (signed 16 bits) x (signed 16 bits) = (signed
32 bits). The _ _mul() can be used to prevent an overflow of 16-bit operations.

signed long _ _mul(signed int, signed int);

This built-in function is enabled only when the MB number of the F2MC-16LX/16F series has
been specified using the -CPU option.

Figure 10.5-2 "Signed 16-Bit Multiplication Using _ _mul( )" shows an example of coding a
function that uses _ _mul().

Figure 10.5-2 Signed 16-Bit Multiplication Using _ _mul()

.SECTION CODE, CODE, ALIGN=1

- T n oy o begin_of function
s?gne int argl, arg2; .GLOBAL sample
signed long ans; sample: B
- LINK #0
void sample (void) (
{ ans = _ _mul (argl, arg2);
ans = _ _mul(argl, arg2); ] | :ﬁgzz i' 7arg; | :

, _arg:

) MOVL _ans, A

}
UNLINK
RET
.END
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10.5.3 Unsigned 16-Bit Multiplication Using _ _mulu()

This section briefly describes unsigned 16-bit multiplication using _ _mulu().
The _ _mulu() is used to return the result of (unsigned 16 bits) x (signed 16 bits)
operations as unsigned 32 bits.

m Unsigned 16-Bit Multiplication Using __mulu()

The _ _mulu( ) executes multiplication operations of (unsigned 16 bits) x (unsigned 16 bits) =
(unsigned 32 bits). The _ _mulu() can be used to improve the efficiency of 16-bit operations.

unsigned long _ _mulu(unsigned int, unsigned int);

Figure 10.5-3 "Unsigned 16-Bit Multiplication Using _ _mulu( )" shows an example of coding a
function that uses _ _mulu().

Figure 10.5-3 Unsigned 16-Bit Multiplication Using _ _mulu()

.SECTION CODE, CODE, ALIGN=1

- o begin of function
unsigned int argl, arg2; GLOBAL sample
unsigned long ans; sample B
LINK #0
void sample (void) (
{
ans = _ _mulu(argl, arg2);
ans = _ _mulu(argl, arg2) ;4 Movw A, argl
[ MULOW A, _arg2

} MOVL _ans, A

}
UNLINK
RET
.END
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10.5.4 Signed 32-Bit/Signed 16-Bit Division Using _ _div()

This section briefly describes signed 32-bit/signed 16-bit division using _ _div().
The _ _div() is used to return the result of (signed 32 bits)/(signed 16 bits) operations
as signed 16 bits.

m  Signed 32-Bit/Signed 16-Bit Division Using _ _div()

The _ _div( ) executes division operations of (signed 32 bits)/(signed 16 bits) = (signed 16 bits).
The _ _div() can be used to improve the efficiency of 32-bit operations.

signed int _ _div(signed long, signed int);

This built-in function is enabled only when the MB number of the F2MC-16LX/16F series has
been specified using the -CPU option.

Figure 10.5-4 "Signed 32-Bit/Signed 16-Bit Division Using _ _div( )" shows an example of
coding a function that uses _ _div().

Figure 10.5-4 Signed 32-Bit/Signed 16-Bit Division Using _ _div()

.SECTION CODE, CODE, ALIGN=1
e begin_of function

.GLOBAL sample

signed int arg2, ans; _sample: N

signed long argl; LINK #0
PUSHW (RWO)

void sample (void) PPl {

{ o ans = _ _div(argl, arg2);
MOVL A, _argl

ans = _ _div(argl, arg2) :L MOVW RWO, arg2
) \ [ pivw A, RWO ]

MOVW RWO, A
\*

MOVW A, RWO
MOVW _ans, A
}

POPW (RWO)

UNLINK
RET
.END
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10.5.5 Unsigned 32-Bit/Unsigned 16-Bit Division Using _ _divu()

This section briefly describes unsigned 32-bit/unsigned 16-bit division using _ _divu().
The _ _divu() is used to return the result of (unsigned 32 bits)/(unsigned 16 bits)
operations as unsigned 16 bits.

m Unsigned 32-Bit/Unsigned 16-Bit Division Using _ _divu()

The _ _divu() executes division operations of (unsigned 32 hits)/(unsigned 16 bits) = (unsigned
16 bits). The _ _divu() can be used to improve the efficiency of 32-bit operations.

unsigned int _ _divn(unsigned long, unsigned int);

Figure 10.5-5 "Unsigned 32-Bit/Unsigned 16-Bit Division Using _ _divu( )" shows an example of
coding a function that uses _ _divu().

Figure 10.5-5 Unsigned 32-Bit/Unsigned 16-Bit Division Using _ _divu()

.SECTION CODE, CODE, ALIGN=1
jo————-- begin_of_ function

.GLOBAL _sample
unsigned int arg2,ans; _sample:
unsigned long argl; LINK #0
PUSHW (RWO)
void sample (void) iiii {
{ piii ans = _ divu(argl, arg2);
H MOVL TR, Targl T 1
ans = _ _divu(argl, arg2) ;L MOV RWO, arg2
) ‘"‘~.- ] DIVOW A, RWO |

\ MOVW RWO, A

: MOovVH A, RWO
: MovW _ans, A

}

POPW (RWO)

UNLINK

RET

.END
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10.5.6 Signed 32-Bit/Signed 16-Bit Remainder Calculation Using
__mod()

This section briefly describes the remainder of signed 32-bit/signed 16-bit division
using _ _mod().

The _ _mod() is used to return the remainder of (signed 32 bits)/(signed 16 bits)
operations as signed 16 bits.

m  Signed 32-Bit/Signed 16-Bit Remainder Calculation Using _ _mod()

The _ _mod() returns the remainder of the result of (signed 32 bits)/(signed 16 bits) operations
as signed 16 bits. The __mod() can be used to improve the efficiency of 32-bit operations.

signed int _ _mod(signed long, signed int);

This built-in function is enabled only when the MB number of the F’MC-16LX/16F series has
been specified using the -CPU option.

Figure 7.1-3 "Signed 32-Bit/Signed 16-Bit Remainder Calculation Using _ _mod( )" shows an
example of coding a function that uses _ _mod().

Figure 10.5-6 Signed 32-Bit/Signed 16-Bit Remainder Calculation Using _ _mod( )

.SECTION CODE, CODE, ALIGN=1
e begin_of_ function

.GLOBAL _sample
signed int arg2, ans; _sample:
signed long argl; LINK #0
PUSHW (RWO)
void sample (void) iiii {
{ Piii ans = _ _mod(argl, arg2);
MOVL A, argl :
ans = _ _mod(argl, argZ)* MOV RWOT arg2
\ [ow A, RWO ]
} NS MOVW A, RWO

‘ MOVW _ans, A

}
POPW (RWO)
UNLINK
RET
.END
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10.5.7 Unsigned 32-Bit/Unsigned 16-Bit Remainder Calculation

Using __modu()

This section briefly describes the remainder of unsigned 32-bit/unsigned 16-bit
division using _ _modu().

The

__modu( ) is used to return the remainder of (unsigned 32 bits)/(unsigned 16 bits)
operations as unsigned 16 bits.

m Unsigned 32-Bit/Unsigned 16-Bit Remainder Calculation Using _ _modu()
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The _ _modu( ) returns the remainder of the result of (unsigned 32 hits)/(unsigned 16 bits)
operations as unsigned 16 bits. The _ _modu( ) can be used to improve the efficiency of 32-bit

operations.

unsigned int _ _modu(unsigned long, unsigned int);

Figure 10.5-7 "Unsigned 32-Bit/Unsigned 16-Bit Remainder Calculation Using _ _modu( )"
shows an example of coding a function that uses __modu().

Figure 10.5-7 Unsigned 32-Bit/Unsigned 16-Bit Remainder Calculation Using _ _modu()

unsigned int arg2,ans;
unsigned long argl;

void sample (void)

{

ans = _ _modu(argl, arg2);1~

.SECTION CODE, CODE, ALIGN=1
fffffff begin_of_function
.GLOBAL _sample
_sample:
LINK #0
PUSHW (RWO)
{
ans = _ _divu(argl, arg2);
MOVL A, _argl
MOVW RWO, _arg2
| DIVUW A, RWO ]
NG MOVW A, RWO
‘ MOVW _ans, A
}
POPW (RWO)
UNLINK
RET
.END




CHAPTER 11 NOTES ON ASSEMBLER PROGRAM IN C
PROGRAMS

This chapter provides notes on including Assembler program in C programs.

11.1 "Including Assembler Program in C Programs"

11.2 "Differences Between Using the _ _asm Statement and #pragma asm/
endasm”
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11.1 Including Assembler Code in C Programs

This section briefly describes how to code assembler program modules.
The _ _asm statement can code only one assembly language instruction. The
#pragma asm/endasm can code multiple assembly language instructions.

m Coding Assembler Programs

Assembler source programs consist of the following fields:

Symbol field

Instruction field Operand field Comment field Line-feed field
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The assembler executes the code assuming that the character string coded starting in column 2
is an instruction. An Assembler instruction character string coded in a C source program will be
output as is to an assembly source file output by the C compiler. Therefore, a tab code or null
character string is required at the beginning of the character string.

As shown in Table 11.1-1 "Coding Assembler Programs”, the fcc907 can use the _ _asm
statement or #pragma asm/endasm to include Assembler program in C programs.

Table 11.1-1 Coding Assembler Programs

Function Coding method
___asm statement Only one Assembler instruction can be coded per _ _asm
statement.
#pragma asm/endasm More than one Assembler instructions can be coded.

As listed in Table 11.1-2 "Location for Including Assembler Programs"”, coding can also be
divided into coding outside or inside a function based on the coding location in the C program.

Table 11.1-2 Location for Including Assembler Programs

Coding location Explanation
Coding inside a function Assembler instructions are coded as part of the function.
Coding outside a function Because the Assembler instructions are expanded as an

independent section, they must be defined in the section
using a section definition pseudo-instruction.




11.1 Including Assembler Code in C Programs

m Accessing Variables and Functions Defined in C Programs from Assembler Programs

The names of external variables or functions defined in a C program are output as symbols with
an underscore attached as the result of compilation. When variables or functions defined in a C
program are referenced from an assembler program, the variables or functions are referenced
with the underscore attached.

Figure 11.1-1 "Referencing Variables in a C program from an Assembler Program" shows an
example of referencing variables defined in a C program from an assembler program. In this
example, the external variables a and b have been defined in the C program. In function func1(
), the variable b is referenced as _b from the assembler program coded using #pragma asm/
endasm.

Figure 11.1-1 Referencing Variables in a C program from an Assembler Program

The variables a and b defined in the
C program are expanded as variables .SECTION DATA, DATA, ALIGN=2

having a prefixed underscore.
.ALIGN 2
.GLOBAL b
_b:
int a,b; .RES.B 2
.ALIGN 2
void main(void) .GLOBAL _a
a:
! - .RES.B 2

.SECTION CODE, CODE, ALIGN=1
m————— begin_of function

1
2
3
4
5 a = 0xff;
6
7
8
9

#pragma asm .GLOBAL _main
main
MOVN LINK #0
MOVW Piii {
) Piii a = Oxff;
10 |#pragma endasm MOV A, 255
11} MOVW _a, A
MOVN A, #1
| MOVW b, A
The variable b defined in the C program is e UB},LINK
referenced from the assembler program RET
as _b (with a prefixed underscore). -END

Figure 11.1-2 "Referencing a Variable and a Function in a C program from an Assembler
Program” shows an example of referencing a function and a variable defined in a C program
from an assembler program. In this example, function wait( ) is called after a value is assigned
to variable cont outside the function in the C program. Variable cont and function wait( ) are
referenced from the assembler program as _cont and _wait that have a prefixed underscore.
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Figure 11.1-2 Referencing a Variable and a Function in a C Program from an Assembler Program

10
11

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

46
47

L]
Function wait( ) defined in the C program is
expanded as function with a prefixed
underscore.

°
void main(void)
{ .

°

cont = 0x3000;

wait 0/ cii cont = 0x3000;
) MOVW _cont, #12288
' s wait () ;
static void wait (void) CALL _wait
{
for ( ; cont > 0 ; cont--);
}
#pragma asm
ssection code, code, ALIGN=1 Variable cont and function wait( ) defined in the

.global _a funcl

2 funcl: = program are referenced from the assembler
ERT cont, #12288 program as _cont and _wait, with a prefixed
call “wait underscore.

ret

#pragma endasm

<Notes>

Note the following points when using the _ _asm statement or #pragma asm/endasm to
include Assembler code in a C program:

When using the _ _asm statement to code Assembler instructions, always include a tab code
or null character string at the beginning of the character string.

The accumulator (A) register can be used unconditionally. To use another register, save and
restore the register (this is to be performed by the user).

Include only one Assembler instruction per _ _asm statement.

If several Assembler instructions are included, use either as many _ _asm statements as
there are Assembler instructions, or use #pragma asm/endasm.

If an _ _asm statement or #pragma asm/endasm is coded in a C program, optimization by
specifying "-O" for compilation may be suppressed.

The fcc907 does not check Assembler code for errors. If an Assembler instruction coded in
an _ _asm statement or #pragma asm/endasm contains an error, the assembler will output
an error message. Refer to the assembler manual for information about Assembler coding.

[Tip]

Softune C Checker:

The Softune C Checker will output a warning when Assembler instructions are included
using the _ _asm statement or #pragma asm/endasm. The fcc896, fcc907, and fcc911l
support the _ _asm statement and #pragma asm/endasm functions. However, the registers
and instruction sets that can be used depend on the architecture. This check function is
useful for identifying locations that can be rewritten for porting from the fcc896 or fcc911 to
the fcc907.



11.2 Differences Between Using the _ _asm Statement and #pragma asm/endasm

11.2 Differences Between Using the _ _asm Statement and
#pragma asm/endasm

This section briefly describes the differences between using the _ _asm statement and
#pragma asm/endasm.
For including only one Assembler instruction in a function, use the _ _asm statement.

m Including an Assembler Program Having Multiple Instructions in a Function

As listed in Table 11.1-1 "Coding Assembler Programs”, an _ _asm statement can contain only
one Assembler instruction. However, #pragma asm/endasm can contain several Assembler
instructions at a time.

Figure 11.2-1 "Using the _ _asm Statement to Include Assembler Program in a Function" shows
an example of using the _ _asm statement to include two Assembler instructions in a function.

Figure 11.2-1 Using the _ _asm Statement to Include Assembler Program in a Function

.SECTIONDATA, DATA, ALIGN=2

Coding the _ _asm statement in a function -ALIGN = 2
- .GLOBAL b
_b: -
1 int a,b; -RES.B 2
2 .ALIGN 2
3 wvoid main(void) s -GLOBAL _a
4 | - .RES.B 2
5 a = Oxff; _SECTION CODE, CODE, ALIGN=1
6 jTTTTI begin_of function
7 — _asm(" MOVN A&, #1") ;\ . .GLOBAL _main
8 _ _asm(" MOVW _b, A"); \ - LINK #0
5 { .
a = Oxff;
MOV A, #255
MOVW _a, A
~_asm("MOVN A, #1M);
. MOVN A, #1
Assembler handles the character string __asm("MOVW b, A");
coded from column 2 as the instruction. MOVW b, A

iiii }
Enter a tab code or null character at the UNLINK

beginning of the character string. REED

Figure 11.2-2 "Using #pragma asm/endasm to Include Assembler Programs in a Function”
shows an example how the same function can be rewritten using #pragma asm/endasm.

These two examples are almost identical. However, when only one Assembler instruction is to
be included in a function, we recommend to use the _ _asm statement.
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Figure 11.2-2 Using #pragma asm/endasm to Include Assembler Programs in a Function

. . . .SECTION DATA, DATA, ALIGN=2
Including #pragma asm/endasm in a function
.ALIGN 2
1 int a,b: .GLOBAL b
ad b: -
2 - .RES.B 2
3 void main(void) ALIGN 2
4 f .GLOBAL _a
= . a:
5 a = 0Oxff; — RES.B 2
6
.SECTION CODE, CODE, ALIGN=1
7 #pragma asm o begin of function
8 MOVN A, #1 . .GLOBAL _main
K A MowW b, A N e LINK #0
10 #pragma endasm i {
11} i a = 0Oxff;
MOV A, #255
MOVW _a, A
i MOVN A, #1
i i MOVN A, #1
More than one Assembler instruction can be coded ovw MSVWA b, 2
in the section between #pragma asm and #pragma - =
endasm. UNLINK
RET
.END

m Coding an Assembler Program Outside a Function

When an assembler program is coded outside a function, the coded assembler program is
expanded as an independent section. To code an assembler program outside a function, use a
pseudo-instruction for defining the section. If the section has not been defined, operation of the
coded Assembler instructions will be unpredictable.

Figure 11.2-3 "Using #pragma asm/endasm to Code Outside a Function" shows an example of
a function where #pragma asm/endasm is coded outside the function.

In this example, pseudo-instruction for defining the section is used outside the function to define
the 2-byte symbol _b for the assembler. This symbol is accessed by the C function funcl() as
variable b of type int.

When coding an assembler program outside a function, use #pragma asm/endasm.

Figure 11.2-3 Using #pragma asm/endasm to Code Outside a Function
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.SECTION DATA, DATA, ALIGN=2
1 extern int b;
5 .ALIGN 2
. .GLOBAL a
3 int a; a: N
4 - .RES.B 2
5 wvoid main(void) -GLOBAL b
[ .SECTION CODE, CODE, ALIGN=1
7 a = Oxff; ;- beginiofifunctign
.GLOBAL main
8 b = 0x01; main -
9 1} LINK #0
{
10 a = Oxff;
11 #pragma asm MOV A, #255
12 .SECTION DATA, DATA, ALIGN=2 Movw BBL g 01
3 -ALIGN 2 MOVN R, 41
14 .GLOBAL b \ MOVW b, A
15| b: N Piii }
- UNLINK
16 4 .RES.B 2 \ RET
17 #pragma endasm .SECTION DATA, DATA, ALIGN=2
.ALIGN 2
.GLOBAL b
l _b:
.RES.B 2
The pseudosection instruction is used to define -END
the section.




11.2 Differences Between Using the _ _asm Statement and #pragma asm/endasm

[Tip]
Softune C Checker:
The Softune C Checker will output a warning when Assembler instructions are coded using
_ _asm statement or #pragma asm/endasm. The fcc896, fcc907, and fcc911 support the

_ _asm statement and #pragma asm/endasm. However, the registers and instruction sets
that can be used depend on the architecture. This check function is useful for identifying
locations that can be rewritten from the fcc896 or fcc911 to the fcc907.
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CHAPTER 12 NOTES ON DEFINING AND ACCESSING
THE 1/O AREA

This chapter describes the definition and accessing of resources mapped into the 1/0
area. The chapter uses as examples the 1/O area of the MB90678 series of

microcontrollers, which belong to the F~ 2MC-16 family of microcontrollers, to explain
how resources mapped into the 1/0O area are defined and accessed.

12.1 "M90678 Series I/0O Areas"
12.2 "Defining and Accessing Variables Mapped into the I/O Areas"
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12.1 M90678 Series I/O Areas

This section briefly describes the I/O areas of the F °MC-16 Family.

For the F 2MC-16 Family, the area between addresses h’0000 and h’00bf of bank h’00 is
used as the I/O area.

m F2MC-16 Family Memory Mapping

Figure 12.1-1 "F2MC-16 Family Memory Mapping" shows memory mapping in the MB90678
series.

For the F2MC-16 Family, the area between addresses h’'0000 and h’00bf of bank h'00 is used
as the I/O area. Each resource register is mapped into this area. The internal RAM area starts
from address h'0100 of bank h’00. The size of the internal RAM area depends on the model.
For more information, refer to the manual of the model being used.

Figure 12.1-1 F2MC-16 Family Memory Mapping

E External access
No access
Single chip mode Internal ROM external bus External ROM external bus
h’ff ffff
ROM area ROM area
h’ff 0000
h’00 ffff
ROM area FF ROM area FF
bank image bank image
h’”00 4000
h’ 00 2000
h’00 0400
ROM area ROM area ROM area
General-purpose General-purpose General-purpose
register register register
h’00 0100
h’”00 00CO
700 0000 I/O area 1/O area 1/O area
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Figure 12.1-2 "MB90670/675 Series I/O Register Mapping" lists the resource registers mapped
between addresses h’0000 and h’00bf of the MB90678. For details on the registers, refer to the
hardware manual.

Figure 12.1-2 MB90670/675 Series 1/0 Register Mapping

h'005e
h'005¢c
h'005a
h'0058
h'0056
h'0054
h'0052
h'0050

h'0044
h'0042
h'0040
h'003e
h'003c
h'003a
h'0038
h'0036
h'0034
h'0032
h'0030
h'002e
h'002c
h'002a
h'0028
h'0026
h'0024
h'0022
h'0020
h'00le

h'001a
h'0018
h'0016

h'0014
h'0012
h'0010
h'000e

h'000a
h'0008
h'0006
h'0004
h'0002
h'0000

CCR11 ocul
CCR10
CCRO1 ocuo
CCRO00
TCRH 24-bit free run timer
TCRL
ICC ICU
TCCR 24-bit free run timer
IDAR
ICCR IADR_[iiC bus IF
IBSR IBCR
TMRO/TMRLRO | 16-bit reload timer 1
TMCSRO
TMRO/TMRLRO | 16-bit reload timer 0
TMCSRO
PRL1 PPG1
PRLO PPGO
PPGO | PPG1 |PPGO/PPGL
ADCR
ADCS
ELVR DTP/external interrupt
ENIR EIRR
SIDRU/SODRL[  SSR1 UARTL
SMR1| SCR1
UIDRO/UODRY  URDO UARTO
UMCO | USRO
EICR |Wwake-up interrupt
PDDA | PDDB
PDD8 | PDD9 |Port direction register
PDD6 | PDD7
Port four direction register
PDD4 | ADER |/analog input enable register
PDD2 PDD3 Port direction register
PDDO | PDD1
EIFR |Wake-up interrupt
PDRA | PDRB
PDR8 | PDR9
PDR6 PDR7 Port data register
PDR4 | PDR5
PDR2 | PDR3
PDRO PDR1

h'00be
h'00bc
h'00ba
h'00b8
h'00b6
h'00b4
h'00b2
h'00b0

h'00a8
h'00a6
h'00a4
h'00a2
h'00a0
h'009e

h'008e
h'008c
h'008a
h'0088
h'0086
h'0084
h'0082
h'0080
h'007e
h'007c
h'007a
h'0078
h'0076

h'0074
h'0072
h'0070
h'006e
h'006¢c
h'006a
h'0068
h'0066
h'0064
h'0062
h'0060

ICR14 | ICR15
ICR12 | ICR13
ICR10| ICR11
ICRO8 ICRO9 Interrupt controller
ICRO6 | ICRO7
ICR0O4 | ICRO5
ICRO2 | ICRO3
ICRO0 | ICRO1
Watchdog ti
WDTC | TBTC |/time-bace timer
HACR EPCR External pin
ARSR
IBSR IBCR |Low-power consumption
DIRR |Delayed interrupt
occurrence module

System reserved area

CPRO7H

CPRO7L

CPRO6H

CPRO6L

CPRO5H

CPROSL

CPR0O4H

CPRO4L

ICU1

CPRO3H

CPRO3L

CPRO2H

CPRO2L

CPRO1H

CPRO1L

CPROOH

CPROOL

ICUO

ICR3H

ICR3L

ICR2H

ICR2L

ICR1H

ICRIL

ICROH

ICROL

ICU
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12.2 Defining and Accessing Variables Mapped into the I/O Area

This section describes how to define and access the I/O area of the MB90678.

m  Operations for Accessing I/O Area Registers as Variables from C Programs

Basically, the following operations are required to access the registers in the 1/O area as
variables from a C program:

1. Use #pragma section to specify the mapping address of the 1/O area.
2. Specify the _ _io type qualifier to define a variable to be mapped into the area.

3. Specify the _ _io type qualifier to declare access to the variable mapped into the I/O area.

m  Sample I/O Register Files Provided by the fcc907

When the fcc907 is installed, files required for defining and accessing an I/O register are
created in the directories shown in Figure 12.2-1 "Directories Containing the Sample I/O Files".
This section uses an example of the MB90678 series to describe the method used for defining
and accessing the /O area.

Figure 12.2-1 Directories Containing the Sample 1/O Files

Installation directory

bin | Directory containing tools, e.g., fcc907

1ip | Directory containing tools, e.g., C Checker, C Analyzer

907 | Directory containing F2MC-16L library files

include [ Directory containing standard header files

sample| Sample I/O register files
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m Defining the MB90678 I/O Registers
All /O registers of the MB90678 hardware can be defined by specifying the following option for
compilation of the files in the directories containing the sample 1/O files:

fcc907s -cpu mb90678 -c *.c

The MB number specified by the -CPU option for compilation has already been defined in the

predefined macro __CPU_MB number_ _
is defined. The number is used to select the required files and define the 1/O area.

Figure 12.2-2 Defining Variables Mapped into the I/O Area (1)

ster definition file V30LO /
OPYRIGHT UJITSU LIMITED 1998
AM PROPERTY OF FUJITSU LIMITED

#define _ _IO_DEFINE

fined (__CPU_MBY0610A_SERIES)

;7;4'1;]39 "_mb90610.h"
® E]ilfhndee_f“—elo_DEFlNE to read an #elif defined(_ CPU MBY90620A SERIES)
_ffmc16.h _fi16Ix.h

1/0 er declaration file V30LO1
(C) FUJITSU LIMITED 1998
PROGRAM PROPERTY OF FUJITSU LIMITED

/16H/16F family 1/0 regigPdeclaration file V30101
D, COPYRIGHT (C) ELg@PSU LIMITED 1998

- PROGRAM PRO WPOF FUJITSU LIMIQ

#include "_f161.h"
#include "_f£161x.h" L
#include "_f£16£.h" @

#if  defined(_N
defined (__N
#error "The I/0 r

ion file V30LO1
LIMITED 1998
OF FUJITSU LIMITED

#endif

PU_MB90210_SERIES)
#include " _mb90210.h"™
o .

#endif

In definition file _ffmc16.c, proceed as follows:
@ Use #define to define _ _I0_DEFINE and include _ffmc16.h.

In _ffmc16.h, proceed as follows:
@ Include _f16l.h.
@ Include _f16Ix.h.
@ Include _f16f.h.
In _f16l.h, use the predefined macro _ _CPU_MB90678_ _ to define the predefined

macros of the series.
Because the _f16Ix.h is a definition file for the 16Ix series, and the _f16f.h is a definition

file for the 16f series, these files are read only.

In the examples given below, CPU_MB90675
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Figure 12.2-3 Defining the Variables Mapped into the 1/O Area (2)

HTS RESERVED, COPYRIGHT (C) FUJITSU LIMIT
LICENSED MATERIAL - PROGRAM PROPERTY OF I TMITED

#if
#include

defined(__CPU_V
' mb90610.h!

90610A_SERIES)
#elif defined(__CPU_MBY0620A_SERIES)
#include " _mb90620.h"

#elif defined(__CPU_MB30630A_SERIES)
#include " _mb90630.h"

#elif defined(__CPU_MBI0640A_SERIES)
#include "_mb90640.h"

#elif defined(_ CPU_MBI0650A_SERIES)
#include "_mb90650.h"

#elif defined(_CPU_MBY0660A_SERIES)
n " mb90660.h"

#elif defined(__CPU_MB90670_SERIES)

#include "_mb90670.h" ®

felif defined(__CPU_MB90675_SERIES)

i#include "_mb90675.h"

#endif

S CPU definition file V30LOL
GHTS RESERVED, COPYRIGHT (C) FUJITSU LIMITED 1998

/ LICENSED MATERTAL - PROGRAM PROPERTY OF FUJITSU LIMITED

#if  defined(_ CPU_MBY0610A_ ) || defined(_ CPU MB9OV610A
defined(__CPU_MB90611A_) || defined(__CPU_MB90613A_)
#define _ CPU_MBO0610A SERIES

.

#elif defined(__CPU_MB90675_ ) || defined(__CPU_MBY0V670__)
defined (__CPU_MBI0676 || defined(__CPU_MB90677
|| defined(__CPU_MBYO
defined(_CPU_MB90T678__)
P iderine _ CPU_MB0675_SERIES ®

)

felse
#define
mb90675.h
/* —
MB90675 s, 0 register d le V30LO1
ALL ] ED, COPYRIGHT (C LIMITED 1998
12050 VATERIAL - PROGRAM PROPERTY OF FUJITSU LIMITED

#include "_f16lr.h"

#ifdef __TO_DEFINE
#define _ 10_EXTERN

#else

#define _ 10_EXTERN extern
#endif

/* 1/0 Area Address */
#ifdef __ TO_DEFT

#pragma section IO
#endif

0_REG, locate=0x000000

/* addr 00h */
/* addr 0lh */
/* addr 02h */
/* addr 03h */
] /* addr 04h */

3 /* addr 05h */
union io_pdr6 /% addr 06h */
union io_pdr? IO_| /% addr 07h */
union io_pdr8 IO_PDR8; /* addr 08h */

union io_pdr0
union io_pdrl
union io_pdr2
union io_pdr3
union io pdrd
union io_pdrS

In _f16l.h, proceed as follows:
@ Include _f16ls.h.

@ In _f16ls.h, use the predefined macro _ _CPU_MB90678_ _ to define the
predefined macro _ _CPU_MB90675_SERIES.

® Use the predefined macro _ _CPU_MB90675_SERIES defined in _f16ls.h to

include _mb90675.h.
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Figure 12.2-4 Defining Variables Mapped into the I/O Area (3)

_mb90675.h

MBY0675 series I/0 register declaration file V30L01
ALL RIGHTS RESERVED, COPYRIGHT (C) FUJITSU LIMITED 1998
LICENSED MATERTAL - PROGRAM PROPERTY OF FUJITSU LIMITED

_f16lr.h

0 series I/O register declaration file V30LO1

@

f __T0_DEFINE

I0_EXTERN extern

#endif

/* 1/0 Area Address */

#ifdef I0_DEFINE

#pragma section I0=IO_REG,locate=0x000000
#endif

* addr 00h

RN __io union io_pdr0

N __io union io_pdrl
TO_EXTERN __io union io_pdr2 T
__TO_EXTERN __io union io_pdr3 I

__TO_EXTERN __io union io_pdrd
__TO_EXTERN __io union io_p:

ALL RIGHTS RESERVED, COPYRIGHT (C) FUJITSU LIMITED 1998
LICENSED MATERIAL - PROGRAM PROPERTY OF FUJITSU LIMITED

MBY0600 ser

ALL R
LIMITE!

TS

FUJITSU LIMITED

structure o S|

LICENSED MATERIAL

*/
. ; _f16ls.h

s CPU definition file V30LO1
SERVED, COPYRIGHT (C) FUJITSU

- PROGRAM PROPERTY OF

#| #if  defined(_ CPU_MB90610A_) |
defined(_ CPU_MBYOV610A_ ) || ¥
I

#if defined(__CPU_MBO I defing] defined(_ CPU_MB9O611A ]
defined(__CPU_MB90640A S) || defing] defined(_ CPU MB9Y0613A |
defined(_CPU_MB90670_SERIES) || define] #define _ CPU_MB90610A_SERIES

union io_tmesr {
unsigned short word;

#if defined(__CPU_MB90610A
defined(__CPU_MBOI
defined (__CPU_MB906

[ aefined __cpu_mB90675_seriEs

define]

¥ telif

IO _EXTERN _ io union io_ps
IO_EXTERN _ io union io_pdr7 I

__TO_EXTERN __io union io_pdr8

__TO_EXTERN __io union io_pdr9 IO_PDRY;

__TO_EXTERN __io union io_pdra IO_PDRA; /* addr 0Ah
I0_EXTERN _ io union io_pdrb I0_PDRB; /* addr 0Bh

#ifdef _ 10 DEFINE H

static __io unsigned char dmy_0C_OE[3];

tendif

struct {

@ unsigned shord]
unsigned short]
unsigned short]
unsigned shord

defined (__CPU_MB90678__) |

defined(__CPU_MBYOPE78_) || ¥
defined(__CPU_MBIOTE78__.

unsigned short|y #define _ CPU_MB90675_SERIES

unsigned short]
unsigned short]

unsigned short]
unsigned short| gengir

} bit;

In _mb90675.h, proceed as follows:
@ Include _f16Ir.h.
@ In _f16lr.h, include _f16ls.h.

@ In _fl16ls.h, use the predefined macro _ _CPU_MB90678_ _ to define the
predefined macro _ _CPU_MB90675_SERIES.
@ In _f16Ir.h, use the predefined macro _ _CPU_MB90675_SERIES defined in
_f16ls.h to define the required type specific to the MB90675 series.
® Because _ _10_DEFINE has been defined in _ffmc16.c, use #define to define a

macro that replaces _ _10_EXT

ERN with blanks.

® Because _ _10_DEFINE has been defined, use #pragma section to map the
IO_REG section starting from address 0x0000.

@ Specify __IO_EXTERN and the _ _io type qualifier to define the 1/0 register
variables specific to the MB90675 series mapped between addresses 0x0000 and

0x00bf.

Specify the static declaration and the _ _io type qualifier in an area having no 1/0
registers to allocate a dummy area that cannot be accessed by other functions.
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To access the registers mapped into the I/O area, include _ffmc16.h. Do not define

__lO_DEFINE using #define (see (1) in Figure 12.2-5 "Accessing Variables Mapped into the |/
O Area (1)"). The following describes the access declaration when the MB90678 is used.

The MB number to specified in the -CPU option for compilation is defined in defined macro
_ _CPU_MB number_ _. In the examples shown below, = CPU_MB90675 is defined. With
this definition, the required files are selected and access to the 1/O area is declared.

Figure 12.2-5 Accessing Variables Mapped into the I/O Area (1)

To access an /O register variable, include ffmc16.h without defining _ _10_DEFINE.

i#xnclude " ffmclﬁ.h”i e MATERT 2
votd main (i) @
( #include "_£161s.h"

.

.

.

) . /-
declaration file V30LOL
Read the include file without defining _ _IO_DEFINE. ©) (C) FUJITSU LIMITED 1998
- - OPERTY OF FUJITSU LIMITED
*/
/* —ﬁmC]'G'h #include "_£16lxs.h"
-161/161%/16/16H/16F family I/0 regig declara B¥Te v3ono1 e enean cmmrme
AL HTS RE; ), COPYRIGHT (C) EggBU LIIzsg®®s f16f.h [ (_CPU_MB90520_SERTES
LICENSED MATERIAL - PROGRAM PROEJ OF FU LIMITED J* ! -
- W8ics 1/0 register declaration file
- o " ALL RIGHTS RESERVED OPYRIGHT (C) FUJITSU L.
#include "_£161.h LICENSED MATERIAL - RAM PROPERTY OF FUJI'
#include "_£161x.h" .
#include "_f16f.h"
#include "_£16fs.h"

#if  defined (_ N
defined(__N
#error "The I/

#if  defined(__CPU_MB90210_SERIES)
#include "_mb90210.h"
. 0675_SERTES)

#endif .

3
.

fendif

In _ffmc16.h, proceed as follows:

@ Include _f16l.h.

@ Include _f16lx.h.

@ Include _f16f.h.
In _f16l.h, use the predefined macro _ _CPU_MB90678_ _ to define the predefined
macros of the series.
Because the _f16Ix.h is a definition file for the 16Ix series, and the _f16f.h is a definition
file for the 16f series, these files are read only.
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Figure 12.2-6 Accessing Variables Defined in the I/O Area (2)

J*
MB90600 series I/O register declaration file V30LO1
ALL RIGHTS RESERVED, COPYRIGHT (C) FUJITSU LIMITED
LICENSED MATERIAL - PROGRAM PROPERTY OF EI
*/

#if  defined(__CPU_MB90610A_SERIES)
#include "_mb90610.h"

#elif defined(_CPU_MB90620A_SERIES)
#include "_mb90620.h"

#elif defined(_ CPU_MBY0630A_SERIES)
#include "_mb90630.h"

#elif defined(_CPU_MBY0640A_SERIES)
#include "_mb90640.h"

#elif defined(_CPU_MBY0650A_SERIES)
#include "_mb90650.h"

#elif defined(_CPU_MBY0660A_SERIES)
#include "_mb90660.h"

#elif defined(__CPU_MB90670_SERIES)
#include "_mb90670.h"

#elif defined (__CPU_MB90675_SERIES) @
{¥include "_mb90675.h"

#endif

® MBI0600 se

e Mnition file vV 1
RESERVED, COPYRIGHT (C) FUJITSU LIMITED 1998

/*

#if  defined(_ CPU_MB90610A_) || defined(_ CPU_MB90OV61
defined(__CPU_MBIO61 || defined(__CPU_MB90613;
#define _ CPU_MB90610A_SERIE!

°
°
#elif defined(_ CPU_MBY0675_ )

|| defined(_ CPU_MBOOV67

® defined(__CPU MB90678_ ) | defined(__CPU_MBY0P67

defined(__CPU_MB90T678_)
{¥define __ CPU MB90675_SERIES i

defined (__CPU_MB90676_) || defined(__CPU_MB90677_

o ¥

A )

) 1l¥
¥

8_) 1l¥

)«
0L01

SU LIMITED 1998
F FUJITSU LIMITED

#ifdef _ TO_DEFINE

#define _ 10 EXTERN

telse

#define _ TO_EXTERN extern
#endif

/* 1/0 Area Address */

#ifdef 0_DEFINE

#pragma section 10-I0_REG, locate=0x000000
#endif

/* addr 00h */
/* addr 0lh */
/* addr 02h */

10_EXTERN __io union io_pdr0
TO_EXTERN __io union io_pdrl
T0_EXTERN __io union io_pdr2

I0_EXTERN __io union io_pdr3 /* addr 03h */
T0_EXTERN __io union io_pdrd /* addr 04h */
I0_EXTERN __io union io_pdr5 /* addr 05h */

I0_EXTERN __io union io_pdr6

I0_EXTERN __io union io_pdr7

/* addr 06h */
/* addr 07h */

I0_EXTERN __io union io_pdr8 /* addr 08h */
I0_EXTERN __io union io_pdr9 /* addr 09n */
I0_EXTERN __io union io_pdra /* addr ORh */

I0_EXTERN __io union io

pdrb /* addr 0Bh */

¥ifdef _ IO_DEFINE
static __io unsigned char dmy_0C_0E[3]; /%
#endif

addr 0C-OEh

*/

In _f16l.h, proceed as follows:
@ Include _f16ls.h.

@ In _f16ls.h, use the predefined macro __CPU_MB90678__ to define the
predefined macro _ _CPU_MB90675_SERIES.
® Use the predefined macro __CPU_MB90675_SERIES defined in _f16ls.h to

include _mb90675.h.
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Figure 12.2-7 Accessing Variables Defined in the 1/0O Area (3)

_mb90675.h

J*
MB90675 seri 0 register declar
ALL RIGHTS RESERVED, COPYRIGHT (C) FU
LICENSED MATERIAL - PROGRAM PROPERTY

_f16lr.h

Series 1/0 register declaration file V30LO1
ALL RIGHTS RESERVED, COPYRIGHT (C) FUJITSU LIMITED 1998
TERIAL - PROGRAM PROPERTY OF FUJITSU LIMITED

_f16ls.h

U definition file V3
ESERVED, COPYRIGHT (C) FUJITSU

__TO_DEFINE
#define __TO EXTERN

fieise i

i#define _ IO EXTERN extern | ° LIMITED
@ 1 #endif H LICENSED MATERTAL - PROGRAM PROPERTY OF
i #end H
FUJITSU LIMITED
........... */

/* 1/0 Area Address */

/* Sample program for I/0 variables of reload
#ifdef _ 10 _DEFINE / ox e o]

#if  defined(__CPU_MB90610A_) ||
#pragma section IO=TO_REG, locate=0x000000 /* structure of TMCSR * defined (_ | ¥
bendif #if defined(__CPU_MBY defined ( defined (__( I

defined(__CPU_MBY

defined ( defined (__(
o

defined(__CPU_MBY0670 defined(| #define
__IO_EXTERN | io union io_pdr0 IO_PDRO; /* addr 00h | ynion io tmesr ( - -
I0_EXTERN { io union io_pdrl IO_PDRI; - unsigned
__TO_EXTERN | io union io_pdr2 IO_PDR2; #if defined(_ CPU_MB906L defined(
I0_EXTERN } io union io_pdr3 IO_PDR3; defined(_ CPU_MB90G
"~ 10_EXTERN | io union io_pdrd TO_PDR4; edl N felif defined ( CPUME90 |
__10_EXTERN | _io union io_pdr5 10_PDRS; defined( CPU _MB9067S_SERIES) :::;::[(’ H‘ ¢
@ __I0_EXTERN } io union io_pdré IO_PDR6; struct { defined( 5 ) |y
T0_EXTERN} io union io_pdr7 IO_PDR7; @ 1
__TO_EXTERN | io union io_pdr8 IO_PDR8; Gefined( CPU MDO0PETE ) 11 ¥
I0_EXTERN | io union io_pdr9 IO_PDRY; I o
__TO_EXTERN |_ hion io_pdra IO_PDRA; defined(_CPU_MBOOTETS ).
> union io pdrb IO PDRB;  o|f #define _ CPU_MB90675_SERIES |
#ifdef 10 DEFINE °
static __io unsigned char dmy_0C_OE[3]; ° @
#endif unsigned short (]
) bit; #endif
L]
o .
04 ]
o .
L]

In _mb90675.h, proceed as follows:

@ Include _f16Ir.h.

@ In _f16Ir.h, include _f16ls.h.

@ In _f16ls.h, use the predefined macro _ _CPU_MB90675_ _ to define the predefined
macro __CPU_MB90675 SERIES.

@ In _f16Ir.h, use the predefined macro __CPU_MB90675_ SERIES defined in _f16ls.h
to define the required type specific to the MB90675 series.

® Because _ _10_DEFINE has not been defined, use #define to define a macro that
replaces _ _10_EXTERN with extern.

® Specify __IO0_EXTERN and the _ _io type qualifier to declare access to the 1/0
register variables specific to the MB90675 series.

<Notes>

Note the following points when defining 1/O variables:

» Map variables qualified by the _ _io type qualifier to the I/O area defined from address
0x0000 to address 0x00bf. The I/O area can be accessed using highly efficient dedicated
instructions.

» To define I/O variables after address 0x00bf, specify the volatile type qualifier.
» Initial values cannot be set for variables qualified by the _ _io type qualifier.

» Variables qualified by the _ _io type qualifier are handled as variables qualified by the
volatile type qualifier. If the -K NOVOLATILE option is specified, the variables qualified by
the _ _io type qualifier will not be handled as variables qualified by the volatile type qualifier.
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CHAPTER 13 MAPPING VARIABLES QUALIFIED WITH
THE __direct TYPE QUALIFIER

This chapter describes the variables qualified by the _ _direct type qualifier and the
conditions for mapping them.

A variable qualified by the _ _direct type qualifier can be mapped in the page pointed
to by the DPR register and accessed using direct addressing.

13.1 "Output Sections of and Access to Variables Qualified by the _ _direct
Type Qualifier"

13.2 "Mapping Variables Qualified by the _ _direct Type Qualifier"
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13.1 Output Sections of and Access to Variables Qualified by the
___direct Type Qualifier

A variable qualified by the _ _direct type qualifier can be accessed by the direct

addressing method specific to the F °MC-16 family.

A variable qualified by the _ _direct type qualifier to which an initial value has been
assigned is output to the DIRINIT section of the variable area and to the DIRCONST
section of the initial value area. A variable to which an initial value has not been
assigned is output to the DIRDATA section.

m Output Sections of Variables Qualified by the _ _direct Type Qualifier

Like other variables, the variables qualified by the _ _direct type qualifier have different output

section names depending on whether they are initialized.

An uninitialized variable qualified by the _ _direct type qualifier is output only to the DIRDATA

section. This area is allocated in RAM, and is usually initialized to 0 by the startup routine.

An initialized variable is output to the DIRCONST section of the initial value area and to the
DIRINIT section of the variable area. The DIRCONST section of the initial value area is
allocated in the ROM area. The DIRINIT section of the variable area that is accessed at
execution is allocated in the RAM area. The startup routine transfers the initial value in the
ROM area to the RAM area. As a result, the total size of the required ROM and RAM areas is

twice the size of the defined variable.

Figure 13.1-1 Variables Qualified by the _ _direct Type Qualifier and Their Output Sections

Uninitialized variable Initialized variable
_ _direct int datal; _ _direct int i data=123;

| DIRINIT M’DIRCONST|

)

V The DIRCONST section of the initial
ROM area value area is allocated in the ROM area.
The DIRINIT section of the variable area
DIRCONST] that is accessed at execution is allocated
in the RAM area.

For an initialized variable, the total size of
the required ROM and RAM areas is
RAM area twice the size of the defined variable.

DIRINIT The startup routine transfers the initial
value in the ROM area to the variable
area in the RAM area.

For an uninitialized variable, the
variable area is allocated only in the
RAM area.

The startup routine initializes this DIRDATA
area to 0.
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m Accessing a Variable Qualified by the _ _direct Type Qualifier

For the fcc907, the addressing mode when a variable is accessed depends on the memory
model specified at compilation. For a small or medium model, variables are accessed using 16-
bit addressing. For a compact or large model, variables are accessed using 24-bit addressing
and the ADB register. For a variable qualified by the _ _direct type qualifier, the variable is
accessed using direct addressing where addresses are accessed in eight bit units regardless of
the memory model.

Figure 13.1-2 "Accessing a Variable Qualified by the _ _direct Type Qualifier" shows the
difference between normal variable access and access of a variable qualified by the _ _direct
type qualifier. In this example, the address of variable datal qualified by the _ _direct type
qualifier is accessed in eight bit units. The address of variable data2, however, depends on the
memory model specified at compilation. Variables accessed frequently should be qualified by
the _ _direct type qualifier.

Figure 13.1-2 Accessing a Variable Qualified by the _ _direct Type Qualifier

1 direct int datal;
2 Tnt data2;
3
4 int func_direct (void)
5 ( -
6 int total;
3
Compilation using a 5 long mul; Compilation using a
small model [0 total = datal + data2; | | large model
2 mul = datal * data2; |
13
14 return (total) ;
15 }
€O 000000 21 _func_direct: €O 000000 29 _func_direct:
€O 000000 0806 22 LINK 46 €O 000000 0806 30 LINK #6
€O 000002 4800 R 23 MOVW A, S: datal €O 000002 4200 R 31 MOV A, bnksym _data2
€O 000004 761F0000 R 24 ADDW A, datal €O 000004 6F11 32 MOV ADB, A
€O 000008 CBFA 25 MOV @RW3+-6, A €O 000006 4800 R 33
CO 00000A 4800 R 26 m CO 000008 06761F0000 R 34 ADDW A, ADB: data2
€O 00000C 783F0000 R 27 MULUW A, dataz €O 00000D CBFA 35 MOV @RW3+-6, A
€O 000010 1C 28 EXTW €O 00000F 4800 R 36
€O 000011 71B3FC 29 MOVL @RW3+-4, A €O 000011 06783F0000 R 37 MULUW A, ADB: data2
€O 000014 BBFA 30 MOVW A, GRW3+-6 €O 000016 1C 38 EXTW
€O 000016 09 31 UNLINK €O 000017 71B3FC 39 MOVL @RW3+-4, A
€O 000017 67 32 RET CO 00001A BBFA 40 MOVW A, GRW3+-6
€O 00001C 09 41 UNLINK
€O 00001D 66 42 RETP
NO SECTION-NAME SIZE ATTRIBUTES NO SECTION-NAME SIZE ATTRIBUTES
0 DATA . . . . . « . « . . 000002 DATA REL ALIGN=2 0 DATA * . . . . . . « . . 000002 DATA REL ALIGN=2
1 DIRDATA . . . . . . . . 000002 DIR REL ALIGN=2 1 DIRDATA . . . . . . . . 000002 DIR REL ALIGN=2
2 CODE . « « v voui e 000018 CODE REL ALIGN=1 2 DCLEAR . . . . . . . .. 000006 CONST  REL ALIGN=2
3 CODE_* .« v v oo .. 00001E CODE REL ALIGN=1
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13.2 Mapping Variables Qualified by the _ _direct Type Qualifier

All variables qualified by the _ _direct type qualifier must be mapped in the page
pointed to by the DPR register. Therefore, the total size of the variables qualified by
the _ _direct type qualifier must not exceed 256 bytes.

m  Accessing Variables Using Direct Addressing

144

In direct addressing, only the eight low-order bits of an address of a variable accessed using 16
or 24 bits are accessed. The eight-bit values that can be accessed are 0 to 255. In direct
addressing, the DTB and DPR registers are used to determine the address to be accessed as
shown in Figure 13.2-1 "Areas into Which Variables Qualified by the _ _direct Type Qualifier
Can Be Mapped". The following settings are required to access a variable using direct
addressing:

1. Setthe DPR register in the data bank which is indicated by the DTB register.

2. Allocate the areas (DIRVAR and DIRINIT) of the variables qualified by the _ _direct type
qualifier into the page (256 bytes) indicated by the DPR register.

Figure 13.2-1 Areas into Which Variables Qualified by the _ _direct Type Qualifier Can Be Mapped

H 00 ffff
mov A, S:_datal
H 00 04ff N
DIRINIT DTB DPR Direct addressing
[oxoo | [ oxoa | [ o |
DIRDATA
>- 256 bytes \ l /
datal | 0x00 | 0x04 | XX |
MSB LSB
—
B 00 0400 < DPR(0x04) 24-bit physical address
H' 00 0000 DTB,SSB,USB(0x00)

_ _direct Type Qualifier and Initialization of the DTB Register

The DTB register accessed in direct addressing is initialized to 0x00 at reset.

For a small or medium model in which the variable areas are restricted to 1 bank, there is no
problem if the initial values are used as is. For a compact or large model in which the variable
areas can be specified for multiple banks, the numbers of banks used to map the DIRINIT and
DIRDATA sections must be set in the DTB register.

Use the startup routine to set the DTB register. For the startup routine provided by the fcc907,
the DTB register has been set up based on allocation of the DATA section. Refer to these to
code the startup routine based on the system to be created.
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_ _direct Type Qualifier and Initialization of the DPR Register

The DPR register accessed in direct addressing is initialized to Ox01 at reset.

When a variable is accessed by direct addressing using the initial values of the DTB and DPR
registers as is, the 256-byte area starting from address h’0100 of the 0x00 bank will be enabled
for direct addressing. However, an extended intelligent I/O service descriptor is already present
between addresses h'0100 and h’015f. In addition, an area for a general-purpose register is
present between addresses h’180 and h'0380. Therefore, when mapping variables qualified by
the _ _direct type qualifier for a small or medium model, initialize the DPR register based on use
of the extended intelligent 1/O service and register bank.

For the startup routine provided by the fcc907, the DPR register has been set up based on
allocation of the DIRDATA section. Refer to these to code the startup routine based on the
system to be created.

m  Mapping Variables Qualified by the _ _direct Type Qualifier

Figure 13.2-2 "Mapping Variables Qualified by the _ _direct Type Qualifier (Small Model)"
shows the link specification and an image of the actual mapping of the variables qualified by the
_ _direct type qualifier when a small model is specified.

In this example, the DIRDATA section is allocated starting from the page boundary after the
DATA section. The DIRINIT section is then allocated. The DIRCONST section for initial values
is allocated at the end of the section allocated in the ROM area. At execution, the initial value
DIRCONST in the ROM area is transferred to the variable area in the RAM area.

Figure 13.2-2 Mapping Variables Qualified by the _ _direct Type Qualifier (Small Model)

Hff ffff
INTVECT
H' ff f5
@ -AL 0
@ -ro ROM_AREA=0xFF8000/0xFFFFFF
@ -ra RAM AREA=0x000100/0x000780 DIRCONST]
@ -sc INIT/WORD+DATA/WORD+DIRDATA/PAGE+DIRINIT/WORD DCONST The initial value DIRCONST in the ROM
+STACK/WORD=RAM_AREA area is transferred to the variable area
@ -sc CODE/BYTE+DCONST/BYTE+DIRCONST/BYTE=ROM AREA DIRINIT in the RAM area.
@ -rg 0 - CODE
@ -m *:¥softune¥***¥direct **.mpl H'£f 0000
€ -pl 60 H'00 ffff
@ -pw 132
@ -alin *:¥softune¥***¥Ydirect **¥LSTY Because the page boundary has been
@ -alout *:¥softune¥***¥direct **¥LSTY STACK specified at linkage, DIRDATA is allocated
@ -na DIRINIT le] starting from the page boundary.
@ -Xals
@ -Xalr DIRDATA
@ -w 1 H’00 0200 <«—DPR
¢ -9 1700 0190
@ -cwno 3 oL Register bank 0 | Because the page pointed to by the DPR
@ -a 7000180 register is accessed using 8-bit addressing,
@ -cpu MB90672 DATA up to 256 bytes can be accessed by direct
@ -o *:¥softune¥***¥direct **¥ABS¥direct **.abs INIT addressing.
100 00ff
0 ‘ 1/O area
#7100 0000 DTB,SSB,USB

Figure 13.2-3 "Mapping Variables Qualified by the _ _direct Type Qualifier (Large Model)"
shows the link specification and an image of the actual mapping of the variables qualified by the
_ _direct type qualifier when a large model is specified.

In this example, the DIRDATA section is allocated starting from address h’0100 of the 0x00
bank. The DIRINIT section is then allocated. The DIRCONST section for initial values is
allocated starting from the beginning of the Oxff bank. At execution, the initial value DIRCONST
in the ROM area is transferred to the variable area DIRINIT in the RAM area.
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Figure 13.2-3 Mapping Variables Qualified by the _ _direct Type Qualifier (Large Model)

@ -AL 0
@ -ro ROM2_AREA=0XFE0000/0XFEFFFF
@ -ro ROM_AREA=0XFF8000/0XFFFFFF CODE AA
@ -ra RAM AREA=0x000100/0x000780 -
@ -ra RAM2 AREA=0x010000/0x01FFFF
@ -ra STACK_AREA=0xFD0000/0xFDFFFF CODE
@ -sc DIRDATA/PAGE+DIRINIT/WORD+DATA AA/BYTE

+INIT_AA/BYTE=RAM_AREA B DCLEAR
@ -sc DATAiiB/BYTEﬁINITﬁSB/BYTE:RAMzi}XREA DTRANS
@ -sc STACK/BYTE=STACK_AREA CODE_BB
@ -sc DCONST_BB/BYTE+CODE_BB/BYTE=ROM2_AREA DCONST_AA
@ -sc DIRCONST/BYTE+DCONST AA/BYTE+DTRANS/BYTE+DCLEAR/BYTE STACK

+CODE/BYTE+CODE_AA/BYTE=ROM_AREA R RO ST DCONST_BB < 5SB
€ -rg 0 H'ff bank H'fe bank H'fd bank usB
@ -m D:¥softune¥**¥direct large¥LST¥direct large.mpl
@ -pl 60
e -pw 132
@ -alin D:¥softJne¥"*¥direct7;arge¥LST¥
@ -alout D:¥softune¥**¥direct_large¥LSTY INIT AA |«
@ -na
@ -Xals DATA_AA
¢ Xalr Register
¢ -wl bank 0
e g T
@ -cwno DIRINIT  [€—
e -a
@ -cpu MB90672 DIRDATA INIT_BB
@ -0 D:i¥softune¥**¥direct_large¥ABS¥direct_large.abs DPR A BB e

Hoobank € °™® oz bank

<Notes>

The fcc907 does not provide a function for calculating the total size of variables qualified by
the _ _direct type qualifier and outputting error messages. If the total variable size exceeds
256 for the whole system, an error message is output during linkage.

[Tip]
Softune C Analyzer:

The Softune C Analyzer checks the reference relationships of variables in a specified
module, and displays the candidates for _ _direct type qualifier declaration in descending
order of number of references. The number of generated candidates can be reduced by
specifying an upper limit for the number of _ _direct type qualifier declarations. This check
function is helpful in determining the variables for qualification by the _ _direct type qualifier.



CHAPTER 14 CREATING AND REGISTERING
INTERRUPT FUNCTIONS

This chapter provides notes for creation and registration of interrupt functions.

The F2MC-16 family of microcontrollers has various resources for generating
interrupts. The generation and processing of interrupts requires to set initial values
for hardware and software.

14.1 "F?MC-16 Family Interrupts"

14.2 "Required Hardware Settings for Interrupts"

14.3 "Using the _ _interrupt Type Qualifier to Define Interrupt Functions"

14.4 "Setting of Interrupt Vectors"
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14.1 F°MC-16 Family Interrupts

This section describes interrupt handling in the F °MC-16 family of microcontrollers.
When an interrupt occurs, the processing being executed is temporarily halted and
interrupt processing is executed. When interrupt processing terminates, processing
resumes from where the interrupt occurred.

m F2MC-16 Family Interrupts

The F2MC-16 Family has the following four types of interrupts. When an interrupt occurs, the
processing currently being executed is temporarily halted and control is passed to the interrupt
handler. When interrupt processing terminates, processing resumes from where the interrupt
occurred.

Hardware interrupt
Software interrupt
Interrupts
Extended intelligent 1/0 service
Exception

m Interrupt handling in the F 2MC-16 Family
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This section mainly describes the handling of internal resource interrupts in the F2MC-16 family,
but also covers other types of interrupt handling.

In the F°MC-16 family, when an internal resource interrupt request or external interrupt request
that is allowed occurs during program execution, control passes to the interrupt handler. The
necessary interrupt handling is executed, the reti instruction is issued, control returns to the
location where the interrupt was detected, and the interrupted processing is resumed.

Figure 14.1-1 "F2MC-16 Family Interrupt Handling" shows interrupt handling in the F2MC-16
family.

The following preparations are required before F>MC-16 family internal resource interrupts and
external interrupts can be handled:

Hardware settings

» Setting of system stack area

» Initialization of internal resources that can generate interrupt requests

» Setting of the resource interrupt level

» Starting of resource operation

» Enabling of internal interrupts in the CPU



O Creation of interrupt functions

14.1 F2MC-16 Family Interrupts

O Registration of the interrupt functions in interrupt vectors

Provided the above preparations have been made, a hardware interrupt request will be issued
when an interrupt occurs. If the interrupt is allowed, the CPU saves the contents of registers

and passes control to the corresponding interrupt processing handler.

Sections 14.2 "Required Hardware Settings for Interrupts” to 14.4 "Setting of Interrupt Vectors"
describe the preparations for interrupt processing.

Figure 14.1-1 F 2MC-16 Family Interrupt Handling

Interrupt request

extern int sub(long); (‘

void main (void) —

{
int datal;
long ldata;
long ladd;
.

datal = sub(ldata);
if (l1data > ladd)

Is the interrupt
request level higher than current
interrupt level?

Is the interrupt
enabled (1 = 1)?
no

Save PS, PC, PCB, DTB, ADB, and
DPR to the stack SSP points to.

!

Switch to system stack (S<1).

{

Fetch entry address of interrupt
processing program from interrupt

vector.

Set ILM to received interrupt level.

v

Execute interrupt processing.

!

Execute reti (interrupt return
instruction).
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14.2 Required Hardware Settings for Interrupts

This section describes the required hardware settings for interrupt handling.
The following steps must be performed to enable interrupt handling.

» Setting the stack area

 Initial value of resources that can generate interrupt requests

» Setting the resource interrupt level

 Starting resource operation

* Enabling CPU interrupts

m Required Hardware Settings for Interrupts

The following steps must be performed to enable interrupt processing for F2MC-16 family
microcontrollers:

e Setting the system stack area

« Initial value of resources that can generate interrupt requests
» Setting the resource interrupt level

» Starting resource operation

« Enabling CPU interrupts

Sections 14.2.1 "Setting the System Stack Area" to 14.2.5 "Enabling CPU Interrupts" describe
the required initializations.
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14.2 Required Hardware Settings for Interrupts

14.2.1 Setting the System Stack Area

This section describes how to set the system stack areas used for interrupt handling.
When an interrupt occurs, the CPU automatically saves the contents of the registers
on the system stack.

m Setting the System Stack

When an allowed F2MC-16 family interrupt occurs, the CPU saves the contents of the registers
shown below on the stack, and then executes interrupt processing.

e Aregister

« DPR register
« ADB register
- DTB register
e PCB register
e PCregister

« PSregister

Figure 14.2-1 Registers Saved to the System Stack when an Interrupt Occurs

Registers saved on the system stack when an interrupt occurs
high| MSB LSB) ¢ sSP before interrupt
A register A AH occurrence
DPR register AL
ADB register
DTB register DPR ADB
PCB register DTB PCB
PC register (for storing the address of
the next instruction to be executed) PE
PS register v PS )
low < SSP after interrupt
occurrence

The system stack must be initialized as follows to create a system in which interrupt processing
can be executed:

« Allocation of system stack area
« Setting the system stack pointer (SSP)
« Specifying the address of stack allocation for the linker

Register values cannot be set directly in a C program. An assembler must be used to set the
system stack pointer. Use a startup routine to allocate the system stack area and initialize the
system stack pointer (SSP).

In addition, specify the mapping addresses of the system stack at linkage.

Figure 14.2-2 "Setting the System Stack Area" shows an example of using a startup routine to
allocate the system stack area and setting the system stack pointer.
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Figure 14.2-2 Setting the System Stack Area

; Sample program for initialization (small model)

. PROGRAM start
.TITLE start
.
.
°
°
; definition to stack area
.SECTION STACK, STACK, ALIGN=1
.RES.B 254
SSTACK_TOP:
.RES.B 2
.RES.B 254
USTACK_TOP:
.RES.B 2
.
o Areas of 256 bytes have been allocated for the
e System stack and user stack defining the STACK
e section.
; code area
.SECTION CODE, CODE, ALIGN=1
start:
- °
°
°
.
; set system stack
AND CCR, #0x20
MoV A, #BNKSYM SSTACK_TOP
MOV SSB, A
MOVW A, #SSTACK_TOP
MOVW SP, A
AND CCR, #0x00DF
e The bank containing the symbol SSTACK_TOP
® inthe STACK section has been set in the SSB.
® The address of the symbol SSTACK_TOP has
® been setin the SP.
end bra end
END _ start




14.2 Required Hardware Settings for Interrupts

14.2.2 Initializing Resources

This section describes the initial settings for resources that generate interrupt
requests. This initialization values must be defined dependent on the used resources.

Initializing Resources

Before an interrupt can be generated, the resources that generate interrupt requests must be
initialized.

The internal resources that can request hardware interrupts for an F2MC-16 family
microcontroller have an interrupt enable bit and interrupt request flag in a register. First, the
resources that can execute interrupt processing must be initialized. The settings of the interrupt
enable flag and interrupt level depend on the system to be created. Initialize each resource as
required.

Figure 14.2-3 "Initializing Internal Resources (for interrupts using 16-bit timer)" shows the
registers for the 16-bit reload timer, which is an internal resource. These registers must be
initialized for interrupt operations that uses the 16-bit reload timer. See Figure 14.2-10 "Example
of Initializing Interrupt Processing" for an example of an initialization program for interrupt
processing that uses the 16-bit reload timer.

Figure 14.2-3 Initializing Internal Resources (for interrupts using 16-bit reload timer)

Interrupt handling using the 16-bit reload timer
- Timer control status register (TMCSR)

15 14 138 12 11 10 9 8 7 6 5 4 3 2 1 0
| | |Free | |CLR1|CLRO |MOD2|MOD1|MODO| CUTE|OUTL|RELO| INTE |\UF |CNTE| TRG |
Interrupt enable bit Timer interrupt request flag

1: Interrupt enabled

0: Interrupt disabled This flag is set to 1 when the counter value

underflows from 0 to h'ffff.

If the INTE bit is 1 and interrupts allowed,
an interrupt request will be issued when the UF bit is set to 1.

- 16-bit timer register (TMR) and 16-bit reload register (TMRLR)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TMR (at read): Count value of the 16-bit timer
TMRLR (at write): Retains the initial value of the count.

For information about the registers for each of its internal resources, refer to the hardware
manual for the specific product.
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14.2.3 Setting Interrupt Control Registers

Set the values of the interrupt control register after the resources that generate
interrupt requests have been initialized.

m  Setting Interrupt Control Registers

154

The values of the interrupt control registers must be set after the resources that generate
interrupt requests have been initialized.

An interrupt level setting register is allocated to each internal resource. The interrupt level set in
the interrupt level setting register determines the priority of the interrupts that are enabled.

Figure 14.2-4 "Bit Configuration of an F2MC-16 Family Interrupt Level Setting Register" shows
the bit configuration of the F2MC-16 Family interrupt control registers.

At a reset, the interrupt control registers are initialized to interrupt prohibited level 7. When an
interrupt request is issued in a resource, the interrupt controller informs the CPU of the value
corresponding to the interrupt. Set a value based on the system to be created.

For the F2MC-16 Family, interrupt control registers are mapped between addresses 0x0000b0
and 0x0000bf in the I/O area. (See Figure 12.1-2 "I/O Register Mapping in the MB90670/675
Series")

Table 14.2-1 "Relationship between Interrupt Sources, Interrupt Level Setting Registers, and
Interrupt Vectors for MB90675" shows the relationship between interrupt sources and interrupt
control register bits. For information about the interrupt control registers, refer to the hardware
manual of the specific product.

Figure 14.2-4 Bit Configuration of an F 2MC-16 Family Interrupt Level Setting Register

Bit 7 Bit 0
ICS1 | ICSO
|ICS3 | ICS2 | /ST |/SO | ISE | IL2 | IL1 | ILO |

Extendedvintelligent Interrupt level setting bits
1/0 service channel
select bits

Extended intelligent 1/0 service enable bit
0: The extended intelligent I/O service does not operate.
1: The extended intelligent I/O service operates.

IL2 | IL1 | ILO |Interrupt request level
of o] o High
0 0 1 I
1 1 0 Low
1 1 1 No interrupt

At a reset, the interrupt request level
is initialized to 7 (no interrupt).




14.2 Required Hardware Settings for Interrupts

Table 14.2-1 Relationship between Interrupt Sources, Interrupt Level Setting Registers, and Interrupt

Vectors for MB90675

Interrupt source

Interrupt vector

Interrupt level setting register

Number Address ICR Address
Reset #08 h'FFFFDC - -
INT9 instruction #09 h'FFFFD8 - -
Exception #10 h'FFFFD4 - -
External interrupt #0 #11 h'FFFFDO h’0000B0O
External interrupt #1 #12 h'FFFFCC IeRO
External interrupt #2 #13 h'FFFFC8 ICR1 h’0000B1
External interrupt #3 #14 h'FFEFC4
OCU#0 #15 h'FFEFCO ICR2 h'0000B2
OCU#1 #16 h’FFEFBC
OCU#2 #17 h'FFEFB8 ICR3 h’0000B3
OCU#3 #18 h'FFEFB4
OCU#4 #19 h'’FFEFBO ICR4 h’'0000B4
OCU#5 #20 h'FFFFAC
OCU#6 #21 h'FFFFA8 ICR5 h’0000B5
OCU#7 #22 h'FFFFA4
24-bit free run timer overflow #23 h’FFEFAO ICR6 h’0000B6
24-bit free run timer intermediate bit #24 h'FFEF9C
ICU#0 #25 h'FFEF98 ICR7 h’0000B7
ICU#1 #26 h'FFEF94
ICU#2 #27 h'FFEF90 ICR8 h’0000B8
ICU#3 #28 h'FFEF8C
16-bit reload timer #0/PPGO #29 h’FFFF88 ICR9 h’0000B9
16-bit reload timer #1/PPG1 #30 h'FFFF84
A/D converter measurement #31 h'FFFF80 ICR10 h'0000BA
Wake-up interrupt #33 h'FFEF78 ICR11 h’0000BB
Time-base timer interval interrupt #34 h'FFEF74
UART1 send completion #35 h'FFEF70 ICR12 h’0000BC
UARTO send completion #36 h'FFEF6C
UART1 receive completion #37 h'FFEF68 ICR13 h’0000BD
12C interface #38 h’FFEF64
UART1 receive completion #39 h'FFEF60 ICR14 h’0000BF
Delayed interrupt occurrence module #42 h'FFEF54 ICR15 h’0000BF
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14.2.4 Starting Resource Operation

After the resources that process interrupts have been initialized and the

corresponding interrupt control registers have been set, the resources start operation.

m Starting Resource Operation

Each resource register has a bit for enabling or disabling interrupt processing and a bit for
starting operation of the resource. Setting these bits enables interrupts for the corresponding
resource and starts operation of the resource.

Figure 14.2-5 "Starting Internal Resource Operation (for interrupt processing using the 16-bit
reload timer)" shows how to start the operation of the 16-bit reload timer, which is an internal
resource. See Figure 14.2-10 "Example of Initializing Interrupt Processing” for an example of an
initialization program for interrupt processing that uses the 16-bit reload timer.

Figure 14.2-5 Starting Internal Resource Operation (for interrupt processing using the 16-bit reload
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timer)

Interrupt processing using the 16-bit reload timer

- Timer control status register (TMCSR)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| | | Free | | CLR1|CLRO |MOD2|MODl|MOD0|CUTE|OUTL| RELO| INTE| UF |CNTE| TRG |

Timer count enable bit Software trigger bit

Enabled only when CNTE = 1.
1: Activation trigger wait Writing 1 to this bit activates the
0: Count operation disabled software trigger, loads the reload
register contents to the counter,
and starts the count operation.

Writing 1 to the CNTE and TRG bits loads the reload register contents to the counter
and starts the count operation.

When the counter value underflows from h'0000 to h'ffff, the UF bit is set to 1. If the
INTE bit has been set to 1 at this time, an interrupt request will be issued.

Some resources generate interrupt requests as soon as the resource start. As a result, an
interrupt can occur before processing for interrupts has been completely initialized, with
unpredictable results. Therefore, initialize resources and start their operation in a manner
appropriate for the system.

For information about the registers of respective resources, refer to the hardware manual of the
specific product.



14.2.5 Enabling CPU Interrupts

14.2 Required Hardware Settings for Interrupts

This section describes how to set CPU interrupts to be enabled.

The | flag and ILM value in the CPU determine the interrupt level allowed for the

system.

m Enabling CPU Interrupts

Once the resources for interrupt handling have been set up, the settings for the receiving CPU
must be made.

For the F2MC-16 Family, the interrupt permission flag in the program status register (PS) and
the value of the interrupt level mask register (ILM) determine the hardware interrupt level

allowed for the entire system.

Figure 14.2-6 "Bit Configuration of PS Register" shows the bit configuration of the PS register.

ILM indicates the interrupt level that is currently allowed. If an interrupt request of a higher level
than that indicated by the ILM register occurs, interrupt processing will be executed. Level 0 is
the highest level, and level 7 is the lowest level. When the system is reset, the lowest level (7)

is set.
Figure 14.2-6 Bit Configuration of PS Register
Register bank pointer (RP) Condition code register (CCR)
A A
7 N ~
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
iLm2(iLMifitMo| B4 | B3| B2 [B1 [BO |Free| | S|IT|IN]Z]|]V]|C
1
v
Interrupt level mask register (ILM) Interrupt permission flag
0: Interrupt disabled
1: Interrupt enabled

Interrupt level setting

izl il o Allowed interrupt
level
0 0 0 |Interrupt disabled
ojoj1 High
0
1 1 1 Low

The ILM value is used to determine the interrupt
level allowed for the entire system. If an interrupt
request with a level higher than that indicated by
the ILM occurs and the | flag has been set to 1 to

allow interrupts, interrupt processing will be

executed.

For the fcc907, the _ _set il() function and #pragma ilm/noilm can be used to set the interrupt

level.
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m Using _ _set il() to Set the Interrupt Level in a Function

Because _ _set_il( ) converts the ILM register values into an argument, an interrupt level can be
set anywhere in a function.

void _ _set il (interrupt-level) ;

Figure 14.2-7 "Using _ _set il( ) to Set the Interrupt Level in a Function" shows a function for
which an interrupt level has been set using __set il().

Function main( ) calls the built-in function _ _set il( ) at line 21. Because 7 is specified as an
argument, code that sets 7 in the ILM register is generated.

The _ _set il() can be set at an arbitrary location in a function to generate a code that changes
the interrupt level.

Figure 14.2-7 Using _ _set il() to Set the Interrupt Level in a Function

_main:
LINK #0
{
° iiii init_led();
. CALL _init_led
iiii init_timer();

15 void main(void) CALL _init_ timer
16 { -
17 init led(); 4 - _Set_il(T);
18 - MOV ILM, #7
19 init timer(); Piii flag = 0x01;
20 MOVN A, #1
21 _ _set_i1(7); | The interrupt function __set_il() MOV _flag, A
22 is called to change the interrupt piii _ _EIQ);
23 flag = 0x01; level in the function main(). OR CCR, #64
24 The interrupt level for the entire P while (1) {}
25 _ _EI(O; system can thus be changed at L 24:
26 an arbitrary location in a function. i while (1) {}
27 while (1) {} In this example, __set_il(7) sets BRA L 24
28 the interrupt level for the entire sii: } -
29} systemto 7. UNLINK

L RET

°

34 wvoid init_timer (void)
36 IO_ICR09.byte = 0x00;
38 I0 TMRO = 0x5000;

40 IO_TMCSRO.word = 0x88b;
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m Using #pragma ilm/noilm to Set the Interrupt Level in a Function

The #pragma ilm directive can set the interrupt level for each function. When an interrupt level
is set using #pragma ilm, code that sets the interrupt level is generated before processing of the
function is started.

When changing the interrupt level of a function with #pragma ilm, place #pragma ilm before the
function whose interrupt level is to be changed.

#pragma ilm (interrupt-level) ;

Use #pragma noilm to terminate the specification for changing the interrupt level of a function.

#pragma noilm

Figure 14.2-8 "Using #pragma ilm/noilm to Set the Interrupt Level in a Function" shows a
function whose interrupt level is changed using #pragma ilm/noilm. In this example, interrupt
level 7 is set. That is, when the processing of function main( ) starts, code that sets the ILM to 7
is generated. Because #pragma noilm has been specified after function main( ), code that sets
an interrupt level will not be generated when the processing for function init_timer( ) defined
from line 34 starts.

Figure 14.2-8 Using #pragma ilm/noilm to Set the Interrupt Level in a Function

13 main:

14 | #pragma ilm(7) MOV M #7

s LINK #0

16 void main (void)

17| ¢ { o

18 init led(); P init_led();
19 - CALL _init_led

20 init_timer(); A code that changes the CarLL l@??i’?e“) i
21 interrupt level is generated at _init_timer
22 the beginning of function flag = 0x01;
23 main( ). MOVN A, #1

24 flag = 0x01; In this example, function Mov _flag, &

25 main( ) is executed with Piii _ _EIO:

26 _ _EI(); interrupt level 7. OR CCR, #64

27 Pii while (1) {}
28 while (1) {} L 24

29 Piii while (1) {}
30 } BRA L 24

31 Piii }

31| #pragma noilm UNLINK

34 wvoid init_timer (void)
{

35
36 I0_ICR09.byte = 0x00;
37
38 IO_TMRO = 0x5000;
39
40 IO_TMCSRO.word = 0x88b;
41 °
42 } .
[Tips]

Softune C Checker:

The Softune C Checker will output the message "The interrupt level setting function has
been used" at the location where the _ _set_il( ) function or #pragma ilm/noilm has been
specified. The fcc896 and fcc911 also support _ _set il( ) and #pragma ilm/noilm. When
porting, check this message to see whether the function should be used in the new program.
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m Using the | Flag to Enable Interrupts for the Entire System
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Finally, after all of the initializations for interrupts have been set, the | flag is set.

When the | flag is 1, interrupts are enabled for the entire system. Resetting clears the | flag to 0.
Although interrupts that are higher than the level set by the ILM register are enabled, whether
the interrupts are actually process depends on the status of the | flag.

In the fcc907, interrupts can be disabled by clearing the | flag to 0 with _ _DI( ), as follows.

void _ _Dl(void) ;

Interrupts can be enabled by setting the | flag to 1 with __EI(), as follows.

void _ _El(void) ;

Figure 14.2-9 "Example of Using _ _EI() in a Function to Enable Interrupts" shows an example
of a function that uses _ _EI() to enable system interrupts.

Figure 14.2-9 Example of Using _ _EI() in a Function to Enable Interrupts

° _main:
° LINK 40
15 void main(void) {
16 init led();
17 init led(); CALL _init_ led
18 B Function main( ) calls the Piii init_timer();
19 init timer(); built-in function _ _EI(), CALL _init_timer
20 - which enables interrupts for Piii _ set i1 (7);
21 set 11(7); the entire system. MOV ILM, #7
22 -0~ Interrupts for the entire P flag = 0x01;
23 flag = 0x01; system are enabled. MOVN A, #1
24 MOV _flag, A
25 _ _EI(); % i _ _EIO;
26 OR CCR, #64
27 while (1) {} Tii7 while (1) (J
28 L 24
2 1 iiii while (1) (}
i BRA L 24
L4 e e } -
34 wvoid init_timer (void) UNLINK
35 4 RET
36 I0 _ICR09.byte = 0x00;
37
38 IO_TMRO = 0x5000;
39
40 TO_TMCSRO.word = 0x88b;
41
42y
L]
]

Figure 14.2-10 "Example of Initializing Interrupt Processing" shows an example of an
initialization program for interrupt processing that uses the 16-bit reload timer.

In this example, function main( ) calls function init_timer( ), which initializes the 16-bit reload
timer. On line 36, function init_timer( ) sets the highest interrupt level (0) in the 16-bit reload
timer interrupt control register. Then, on line 38, reload value 0x5000 is set in the IO_TMRO
register. Finally, 0x088b is set in the I0_TMCSRO register and operation of the 16-bit reload
timer starts when initialization starts.

When initialization of the 16-bit reload timer terminates, control is returned to function main( ).
System interrupts are then enabled after __set _il(7) sets the interrupt level of the entire system.
Interrupts using the 16-bit reload timer are thus enabled.



Figure 14.2-10

14.2 Required Hardware Settings for Interrupts

Example of Initializing Interrupt Processing

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

void main (void)
{ init_led();
init_timer();
_ _set_il(7);
flag = 0x01;
EI();

while (1) {}

The interrupt level is set in the control
register in the interrupt controller.

void init_timer (void)

I0_ICRO9.byte = 0x00; *

I0_TMRO = 0x5000;

IO TMCSRO.word = 0x88b;

o

_init timer:

.GLOBAL

LINK
{

begin_of function

_init timer

#0

>

MOVN
MOV

I0_ICR09.byte = 0x00;
A, #0
I:_I0_ICRO9, A

MOVW

MOVW

IO_TMRO = 0x5000;
I: IO _TMRO, #20480

IO_TMCSRO.word = 0x88b;

I: IO _TMCSRO, #2187

the timer operation starts.

The reload value is set in the 16-it reload register, and

<Notes>

Because a reset clears the | flag to 0, execute _ _EI( ) to enable interrupts of the entire
system after the hardware of the system to be created has been initialized.

[Tip]

Softune C Checker:

The Softune C Checker will output messages indicating that the interrupt mask setting and
interrupt mask release functions have been used at the locations where _ _EI() and _ _DI()
are used. The fcc896 and fcc911 also support the ~ EI( ) and _ _DI( ) functions. When
porting, check this message to see whether these functions should also be used in the new

program system.
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14.3 Using the _ _interrupt Type Qualifier to Define Interrupt

Functions

Sections 14.2.1 to 14.2.4 described the initialization required to execute interrupts.
However, interrupt processing cannot be executed simply by initialization. Before
interrupt processing can be executed, interrupt processing functions corresponding to
the interrupts must be created.

m Using the _ _interrupt Type Qualifier to Code Interrupt Functions

162

When an interrupt allowed by an F2MC-16 family microcontroller is issued, the following
procedure is used to execute interrupt processing:

1. The PS, PC, PCB, DTB, ADB, DPR, and A (12 bytes total) are saved on the stack.
2. The ILM register is updated to the level of the received interrupt.

3. The PS register S flag is set (the system stack is used).
4

. Instructions starting from the address indicated by the corresponding interrupt vector are

executed.
Figure 14.3-1 Executing an Interrupt Function
high| MSB LSB | < SSP before
extern int sub (long); Interrupt request * AH ggg{lrrurg:]ce
void main (void) é AL
{ DPR ADB
) ) . ) . DTB PCB
_ _interrupt void timerint(void)
{ PC
PS SSP after
Io¢w < interrupt
Interrupt processing coded in C occurrence
\ When an interrupt occurs, the
hardware saves the contents of the
) PS, PC, PCB, DTB, ADB, DPR, and A
on the system stack and then
] executes the corresponding interrupt
function.
The system stack is used during
When interrupt processing terminates, the register values saved Interrupt processing.
on the stack are restored to the registers and processing
resumes from where the interrupt occurred.

As shown in Figure 14.3-1 "Executing an Interrupt Function", the hardware automatically saves
the contents of registers and passes control to an interrupt processing routine when an interrupt
occurs.

When an interrupt processing routine is coded in assembly language, the reti instruction is
issued at the end of the interrupt processing routine. As a result, the PS, PC, PCB, DTB, ADB,
DPR, and A register values that were saved on the stack are restored and processing resumes
from where the interrupt occurred.

When an interrupt processing function is coded using the fcc907, the interrupt function must be
qualified with the _ _interrupt type qualifier, as shown in Figure 14.3-2 "Using the _ _interrupt
Type Qualifier to Define an Interrupt Function". Based on the coding, the fcc907 compiles the
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specified function as an interrupt function.

Figure 14.3-2 Using the _ _interrupt Type Qualifier to Define an Interrupt Function

Can be omitted.  void must always be specified.

[\

_ _interrupt [ _nosavereg] void function-name(void) {

The interrupt processing program is coded in C.

When an interrupt function qualified by the _ _interrupt type qualifier is executed, the values of
all of the registers that are used in the function are saved. When the interrupt function
terminates, the saved register values are restored and the reti instruction is issued. Issuing the
reti instruction restores the PS, PC, PCB, DTB, ADB, and DPR register values that were saved
on the stack and restarts processing from where the interrupt occurred.

Figure 14.3-3 "Example of an Interrupt Function Using the _ _interrupt Type Qualifier" shows an
example of an interrupt function.

When function int_timer( ) qualified by the _ _interrupt type qualifier is called, the value of the
register (the RWO register in this case) is saved on the stack when the function starts.

When the function terminates, the saved register value is restored and the reti instruction is
issued. The reti instruction restores the PS, PC, PCB, DTB, ADB, DPR, and A register values
that were saved on the stack and restarts processing from where the interrupt occurred.

Figure 14.3-3 Example of an Interrupt Function Using the _ _interrupt Type Qualifier

#pragma ilm(0)

_ _interrupt void int timer (void) oo begin_of_ function
{ > .GLOBAL )
int_ timer Thcehlgrgel’fgp'[ I%vel
“int ti : is ged using
int timer: |_—

MOV TN, He @ | #pragma ilm(0).
I0 TMCSRO.bit.UF = OFF; LINK #2
B PUSHW (RWO)

it The _interrupt type modfier s used to define
function int_timer() as an interrupt function.

I0_PDRO.byte = OFF;
itch (flag) ( When the function starts, the values of all registers used
switc ag P ; T . f
case 0x01: IO PDR1.byte = LED pat[0]; in the function (the RWO register in this case) are saved
break; - and processing is executed.
L]

: When the function terminates, the saved register values
case 0x80: IO PDRI.byte = LED pat(7]; tahrg irrisetror[]%? glr:wc(i:ttlgi reti instruction is issued to terminate
} L ) : .
The reti instruction restores the register values saved on
I0 PDRO.byte = flag; the system stack and restarts processing from where the

) interrupt occurred.
if (! (flag<<=1))

flag = 0x01; !
for(i = 0; i < 100; i++); POPW  (RWO)
UNLINK
IO TMCR.byte = 0x03; = RETT
[ T

#pragma noilm
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m Coding of Interrupt Function That Switches the Register Bank without Saving Work Registers

164

F2MC-16 family microcontrollers can use up to 32 register banks. Because the register bank
that will be used can be changed when an interrupt function starts, it becomes possible to
create an interrupt function that is faster than a function that saves work registers.

When writing an interrupt function that switches to a new register bank, #pragma register/
noregister must be used to switch register banks and the interrupt function must be coded using
both the _ _interrupt type qualifier and _ _nosavereg type qualifier.

When a function is qualified by the _ _nosavereg type qualifier, the values of the registers are
not saved. This applies even if registers are used in the function.

Figure 14.3-4 "Changing Register Banks When an Interrupt Function Is Executed" shows an
example of an interrupt function for which the _ _nosavereg type qualifier is specified.

#pragma register(1) is specified before function int_timer( ) is defined.

When function int_timer( ) qualified by the _ _interrupt type qualifier and _ _nosavereg type
qualifier is called, the code for switching the register bank to be used is output. When the
register bank is switched, an area for the local variables used in the interrupt function is
allocated.

When the function terminates, the saved registers are restored, and then the reti instruction is
issued to restore the PS register value that was saved when the interrupt occurred. Control
then returns to the register bank that was being used before the interrupt occurred.

Figure 14.3-4 Changing Register Banks When an Interrupt Function Is Executed

#pragma ilm(0)

_ _interrupt _ _nosavereg void int_timer (void) jmmmm begin_of_ function
.GLOBAL _int_timer
int i; . e . int ti . H f
e The _interrupt type modifier is used to define —int_timer _US'?IQ regldstt()ar bank
function int_timer( ) as an interrupt function. MoV ILM, #0 T IS changed by
LINK #2 #pragma register(1).
I0 TMCSRO.bit.UF = OFF;
TO_PDRO.byte = OFF; When the function starts, processing is executed
switch (flag) { without saving the values of the registers used in the
case 0x01: IO_PDR1l.byte = LED_pat[0]; function
break;
L]

L]
L]
case 0x80: IO PDRl.byte = LED pat[7];
} B - The reti instruction is issued to terminate the interrupt
function. The reti instruction restores the register values
saved on the system stack and restarts processing from
if (! (flag<<=1)) where the interrupt occurred.
flag = 0x01;

IO_PDRO.byte = flag;

for(i = 0; i < 100; i++);

I0 _TMCR.byte = 0x03; I }
1 UNLINK
| RETI

#pragma noilm

<Notes>

For a function qualified by the _ _interrupt type qualifier, always specify void as the function
type.

When the interrupt processing terminates with the reti instruction, the registers that were
saved to the system stack when the interrupt occurred are restored. Saving the register
values enables the interrupted processing to be restarted. Because the registers are
restored after the interrupt function returns a return value and terminates, the return value
cannot be accessed. In addition, even though the return value has been placed on the
stack, the location of the return value cannot be determined by the function gaining control
after interrupt processing terminates because the stack returns to its pre-interrupt state by
execution of the reti instruction. For this reason, the return value cannot be accessed. To
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prevent such wasteful processing, type void must be specified for the interrupt function. If
the processing results of an interrupt function are required, define an external variable where
the processing results can be saved and accessed when necessary.

[Tip]
Softune C Checker processing:

The Softune C Checker will output a warning message for the location where the _ _interrupt
type qualifier is specified indicating that a type qualifier for coding an interrupt function is
used. The fcc896 and fcc911 support the _ _interrupt type qualifier. When porting, check
this message to see whether the function should also be used in the new program system.
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14.4 Setting of Interrupt Vectors

This section describes how to use #pragma intvect/defvect to register an interrupt
function in an interrupt vector.

Using #pragma intvect enables a created interrupt function to be registered in an
interrupt vector.

m Using #pragma intvect/defvect to Register Interrupt Functions

When the hardware settings for executing interrupt processing and the definitions of the
interrupt functions for the actual operation have been completed, the last step is to register the
created interrupt functions.

The F2MC-16 family provides interrupt vectors at addresses OxFFFCOO to OxFFFFFF.
Registering the required interrupt processing functions in this area enables the required interrupt
processing to be executed when an interrupt occurs.

See Table 14.2-1 "Relationship between Interrupt Sources, Interrupt Level Setting Registers,
and Interrupt Vectors for MB90675" for the relationship between interrupt sources, interrupt
control registers, and interrupt vectors.

The fcc907 uses #pragma intvect as follows to register interrupt functions.

pragma intvect interrupt-function-name interrupt-vector-number

Figure 14.4-1 Using #pragma intvect to Register an Interrupt Processing Function

extern _ interrupt void _start (void);
extern __interrupt void int_timer (void);

extern __ interrupt void dummy (void);

#pragma intvect _start 8 0

#pragma intvect int_timer 29

#pragma defvect dummy Q

N~
The default interrupt function is set in the
interrupt vectors for which no interrupt
processing functions have been specified.

An interrupt processing function is set in
the interrupt vector corresponding to the
specified interrupt.

.SECTION INTVECT, DATA,
LOCATE=H'FFFCO0
.DATAB.L 226, _dummy

.DATA.L _int_timer
.DATAB.L 20, _dummy
.DATA.E ___start
.DATA.B 0

.DATAB.L 8, _dummy
.GLOBAL _dummy
.GLOBAL _int_timer
.GLOBAL __start

.END

Figure 14.4-1 "Using #pragma intvect to Register an Interrupt Processing Function" shows an
example of using #pragma intvect to register an interrupt processing function.
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In this example, the startup routine start( ) is registered in interrupt vector 8 and the 16-bit reload
timer interrupt processing function int_timer( ) is registered in interrupt vector 29.

When #pragma intvect is executed, the interrupt vector table INTVECT, which is allocated
starting at address h’fffc00, is generated. The interrupt vectors that have not been assigned a
vector number by #pragma intvect are filled with zeros. When #pragma defvect is executed, the
specified interrupt function is set in all the vectors that that have been filled with 0. In the
example shown in Figure 14.4-1 "Using #pragma intvect to Register an Interrupt Processing
Function”, default interrupt function dummy is specified with #pragma defvect. Function dummy
is registered in all interrupt vectors except interrupt vector 8 and 29.

<Notes>

When using #pragma intvect to set an interrupt function in a vector table, always declare
access for a function for which the _ _interrupt type qualifier has been specified before you
code #pragma intvect. The fcc907 will output a warning message if the _ _interrupt type
qualifier is omitted.

Registering of a function in an interrupt vector with #pragma intvect/defvect is only allowed in
one module. If the function is registered in more than one module, an error message
indicating that a section name has been specified multiple times may be output during
linking.
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PART IV MAPPING OBJECTS EFFECTIVELY

This part describes how to effectively map created programs into memory.

When the fcc907 is used, the memory model to be selected depends on the scale of
the system to be created. How objects are mapped into memory depends on the
selected memory model. This part describes the following items:

* Memory models and object efficiency

* Mapping variables qualified by the const type qualifier

* Mapping programs in which the code area exceeds 64 Kbytes

* Mapping programs in which the data area exceeds 64 Kbytes

CHAPTER 15 "MEMORY MODELS AND OBJECT EFFICIENCY"

CHAPTER 16 "MAPPING VARIABLES QUALIFIED WITH THE TYPE
QUALIFIER CONST"

CHAPTER 17 "MAPPING PROGRAMS IN WHICH THE CODE AREA
EXCEEDS 64 Kbytes"

CHAPTER 18 "MAPPING PROGRAMS IN WHICH THE DATA AREA
EXCEEDS 64 Kbytes"
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CHAPTER 15 MEMORY MODELS AND OBJECT
EFFICIENCY

This chapter describes the memory models that can be used by the fcc907, including
object efficiency thereof.

* Small model

* Medium model

» Compact model

» Large model

15.1 "Four Memory Models"
15.2 "Memory Models and Object Efficiency"
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15.1 Four Memory Models

This section describes the memory models that can be used by the fcc907.
The fcc907 has small-, medium-, compact-, and large-size memory models based on
memory sizes capable of being handled.

m  Memory Models of the fcc907

The fcc907 has small-, medium-, compact-, and large-size memory models as shown in Figure
15.1-1 "fcc907 Memory Models" based on memory sizes capable of being handled.

Figure 15.1-1 fcc907 Memory Models

Small model Large model
p /— mall mode \ g .
code | se«s data
64KB *n
Compact model
user system
StaCk 64KB StaCk 64KB
- J
data \]
st;ck o code Medium model
64KB *n J
L
N 4

Table 15.1-1 "fcc907 Memory Models" lists the relationship between the memory models and
memory areas that are handled. In addition, Table 15.1-2 "fcc907 Memory Models and
Pointers" lists the relationship between the memory models and pointers at access.-

Table 15.1-1 fcc907 Memory Models
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Small model Medium model Compact Large model
model
Data area One bank One bank Multiple banks Multiple banks
System stack One bank One bank
User stack One bank One bank
Code area One bank Multiple banks One bank Multiple banks
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Table 15.1-2 fcc907 Memory Models and Pointers

Memory model Pointer to function Pointer to variable
Small model 16 bits
Medium model 24 bits 16 bits
Compact model 16 bits 24 bits
Large model 24 bits
Small model

For the code and data areas, 16-bit addressing objects are generated.

Specify a small model for a system that has code and data areas each within one bank (64
Kbytes). Then, when a function is accessed, the bank pointed to by the PCB is accessed using
16-bit addressing. When a variable is accessed, the bank pointed to by the DTB is accessed
using 16-bit addressing.

Large model

For the code and data areas, 24-bit addressing objects are generated.

Specify a large model for a system that uses multiple banks for the code and data areas. The
data and code areas can be allocated at arbitrary locations in the memory space without being
related to the PCB and DTB values. As a result, functions and variables are accessed using 24-
bit addressing.

Medium model

When data is accessed, an object of 16-bit addressing is generated. When code is accessed, a
24-bit addressing object is generated.

Specify a medium model for a system that has a data area within one bank (64 Kbytes). Then,
when a variable is accessed, the bank pointed to by the DTB is accessed using 16-bit
addressing.

Compact model

When data is accessed, a 24-bit addressing object is generated. When code is accessed, a 16-
bit addressing object is generated.

Specify a compact model for a system that has a code area within one bank (64 Kbytes). Then,
when a function is accessed, the bank pointed to by the PCB is accessed using 16-bit
addressing.
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m Memory Models and Bank Registers
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The F2MC-16 Family uses a reset signal to initialize the bank registers. At this time, the four
registers DTB, ADB, USB, and SSB are initialized to h’'00. The PCB is initialized into the bank
where the routine registered in the reset vector has been mapped. In addition, at a reset, the
DPR is initialized to h’01.

For a small- or medium-size model where data is accessed using 16-bit addressing, the three
registers DTB, USB, and SSB must be initialized so as to point to the same bank. For a small-
or medium-size model, the I/O area has been allocated in the h’'00 bank. Therefore, the three
registers DTB, USB, and SSB are initialized so as to point to the h’00 bank.

The three registers DTB, USB, and SSB can thus use the values initialized by a reset as is.
Because a reset initializes the DPR to h'01, the DPR must be set to a page on which a variable
qualified by the _ _direct type qualifier has been mapped.

Figure 15.1-2 Initializing the Bank Registers (for a Small Model)

Initialized to the bank in which the routine registered in the reset vector
has been mapped.
Initialized to h'01 by a reset.

Initialized to h'00 by a reset.

r' N
h'ff bank . .
-— The initial value can be used reset as is.
ROM
64KB area
. t Set to a page on which a variable
h'00 bank qualified by the _ _direct type qualifier
has been mapped.
64KB RAM DTB
area I
USB The initial value can be used
reset as is.
3 SSB

For a small model

For a compact or large model where the data area is accessed using 24-bit addressing, the
restriction where the three registers are set to h’00 does not apply. However, a bank in which a
variable qualified by the _ _near type qualifier and a variable qualified by the _ _direct type
qualifier have been mapped must be set in the DTB register. In addition, a page on which a
variable qualified by the _ _direct type qualifier has been mapped must be set in the DPR
register. Use the startup routine to initialize these registers to values that match the system to
be created.

For details on the DTB, DPR, USB, SSP, and PCB registers, refer to the manual of the
respective hardware.



15.2 Large Models and Object Efficiency

15.2 Large Models and Object Efficiency

When a large model is used, compilation generates 24-bit addressing objects. The
code size for 24-bit addressing is larger and the execution speed is lower than for 16-
bit addressing.

For a system in which the data area or code area exceeds 64 Kbytes, using a large,
medium, or compact model can reduce program efficiency and execution speed.
These problems can be avoided by selecting optimum object mapping.

m Generated Objects of Small and Large Models

This section explains the difference between generated objects when the same source file is
compiled using a small model and a large model.

Figure 15.2-1 "s f dif.c Source File" shows the source file (s_f dif.c) to be compiled. This
section explains the difference when this source file is compiled using a small model and when
it is compiled using a large model.

Figure 15.2-1 s _f dif.c Source File

; int initaddress([4]={1,2,3,4}; EXternal Variable
3 int test[10]; deflnltlon

4

5 void func (int a)

6 {

7 static int data;

8

9 int i;

10

11 data = initaddress([1l] + a;

e ol . External variable
13 for (i=0; 1i<10; i++) /aCCeSS

14 test[i] = data * 2;

15}

Figure 15.2-2 "Source File Compiled Using a Small Model" shows the assembler source file
when s_f _dif.c is compiled using a small model. Figure 15.2-3 "Source File Compiled Using a
Large Model" shows the assembler source file when s_f _dif.c is compiled using a large model.

When the source file is compiled using a small model, the code size is h’2c bytes. When the
source file is compiled using a large model, the code size is h’'41 bytes. The difference is that,
for a small model, a code for 16-bit addressing is generated when an external variable is
accessed and a code for 24-bit addressing is generated for a large model.
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Figure 15.2-2 Source File Compiled Using a Small Model

.SECTION DATA, DATA, ALIGN=2
.ALIGN 2
LI 1
.RES.B 2
.ALIGN 2
.GLOBAL _test
test:
B .RES.B 20
.SECTION DCONST, CONST, ALIGN=2
.ALIGN 2
.DATA.H 1
.DATA.H 2
.DATA.H 3
.DATA.H 4
.SECTION INIT, DATA, ALIGN=2
.ALIGN 2
.GLOBAL _initaddress
_initaddress:
.RES.H 1
.RES.H 1
.RES.H 1
.RES.H 1

NO SECTION-NAME

W e o

SIZE ATTRIBUTES

..... 000016 DATA
..... 000008 CONST
..... 000008 DATA
..... 00002C CODE

REL ALIGN=2
REL ALIGN=2
REL ALIGN=2
REL ALIGN=1

. SECTION
.GLOBAL

LINK
PUSHW
{

MOVW
ADDW
MOVW

MOVN
MOVW

MOVW
MOVN
CMPW
BGE

MOVW
LSLw
ADDW
MOVW
MOVW
LSLW
Movw

INCW
BRA

POPW
UNLINK
RET
.END

CODE, CODE, ALIGN=1

begin_of function

_func

#2
(RWO)

data = initaddress[l] + a;
A, initaddress+2

A, @RW3+4

LI 1, A

for (i=0; 1i<10; i++)

for (i=0; i<10; i++)
A, @RW3+-2
A, #10

A
123

test[i]
A, @RW3+-2
A

data * 2;

A, # test
RWO, A
A, LI_1

A
@RWO, A
for (i=0; 1i<10; i++)
test[i] = data * 2;
@RW3+-2
L 24

(RWO)

There is no problem when creating a small model system in which the code and data areas are
each within 64 Kbytes. However, for a system in which the data area or code area exceeds 64
Kbytes, even marginally, using a large, medium, or compact model can reduce program
efficiency and execution speed. These problems can be avoided by planning object mapping.

Object mapping is described in CHAPTER 17 "MAPPING PROGRAMS IN WHICH THE CODE
AREA EXCEEDS 64 Kbytes" and CHAPTER 18 "MAPPING PROGRAMS IN WHICH THE

DATA AREA EXCEEDS 64 Kbytes".

Figure 15.2-3 Source File Compiled Using a Large Model

.SECTION
FAR_DATA_S:

.ALIGN
LI _1:
- .RES.B

.ALIGN
.GLOBAL
test:
- .RES.B

.SECTION
FAR_DCONST_S:

.ALIGN

.DATA.H
.DATA.H
.DATA.H
.DATA.H

.SECTION
FAR_DATA E:

.SECTION
.DATA.L
.DATA.H

.SECTION
FAR_INIT S:
- - .ALIGN
.GLOBAL
initaddress:

.SECTION
FAR_INIT E:

.SECTION

DATA s_1_dif, DATA, ALIGN=2

test
0

NN NN

DCONST_s_1_dif, CONST, ALIGN=2

ENTRINTSINY

DATA_s_1_dif, DATA, ALIGN=2

DCLEAR, CONST, ALIGN=2
FAR DATA S
FARTDATA E - FAR DATA S

INIT_s_1_dif, DATA, ALIGN=2

initaddress

S

INIT_s_1_dif, DATA, ALIGN=2

DTRANS, CONST, ALIGN=2
FAR ?gONST75

FARCINIT_E - FAR_INIT_S

NO SECTION-NAME

DATA_s_1_dif . . .
DCONST_s_1_dif . .
DCLEAR . . . . . .
INIT s_1_dif . . .
DTRANS . . . . . .
CODE_s_1_dif . . .

G wN e o

..... 000016 DATA
AAAAA 000008 CONST

AAAAA 000008 DATA

..... 000041 CODE

SIZE ATTRIBUTES

REL ALIGN=2
REL ALIGN=2
REL ALIGN=2
REL ALIGN=2
REL ALIGN=2
REL ALIGN=1

AAAAA 000006 CONST

..... 00000A CONST

 24:

.SECTION

begin_of function

.GLOBAL

LINK
PUSHW
{

MOV
Mov
MOVW
ADDW
MoV
MOV
SWAPW
MovW

MOVN
MOVW

MOVW
MOVN
CMPW
BGE

MOVW
EXTW
LSLW
ADDL
MOVL
MoV

MOV

MOVW
LSLW
MOVW

INCW
BRA

POPW
UNLINK
RETP
.END

CODE_s_1_dif, CODE, ALIGN=1
_func

#2
(RWO, RW1)

data = initaddress[1] + a;
A, #bnksym _initaddress
ADB, A

A, ADB:_initaddress+2

A, QRW3+6

A, #bnksym LI_1

ADB, A

ADB:LI_1, A

for (i=0; i<10; i++)
A, #0

@RW3+-2, A

for (i=0; i<10; i++)
A, @RW3+-2
A, #10
A
L 23
test[i] = data * 2;
A, @RW3+-2

A

A, #_test

RLO, A

A, #bnksym LI_1
ADB, A

A, ADB:LI_1

A
@RLO, A
for (i=0; i<10; i++)
test[i] = data * 2;
@RW3+-2
L 24

(RWO, RW1)




CHAPTER 16 MAPPING VARIABLES QUALIFIED WITH
THE TYPE QUALIFIER CONST

This chapter describes mapping of variables that have been qualified by the const type

qualifier. The F 2MC-16L/LX/F series has a function referred to as the mirror ROM
function. For small and medium models, this function enables variables mapped in the
ROM area to be accessed using 16-bit addressing.

16.1 "Using the Mirror ROM Function and const Type Qualifier"
16.2 "const Type Qualifier When the Mirror ROM Function Cannot Be Used"
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16.1 Using the Mirror ROM Function and const Type Qualifier

This section provides notes on mapping variables qualified by the const type qualifier
for hardware that supports the mirror ROM function.

By mapping variables in the areas defined for the hardware, variables in the ROM area
can be accessed using 16-bit addressing.

m  What Is the Mirror ROM Function?

The F?MC-16L/LX/F series has a function referred to as the mirror ROM function. When area
defined in the h’'00 bank is accessed using 16-bit addressing, the mirror ROM function
automatically accesses the same area in the ROM area of the h’ff bank using 16-bit addressing.

As a result, a variable qualified by the const type qualifier that has been mapped in the ROM
area can be accessed using 16-bit addressing in the same way as a standard variable mapped
in the h’00 bank.

Figure 16.1-1 "Accessing Variables Qualified by the const Type Qualifier for Hardware That
Supports the Mirror ROM Function" shows an access image of variables qualified by a const
type qualifier for hardware that supports the mirror ROM function.

Sections 16.1.1 "const Type Qualifier and Mirror ROM Function for Small and Medium Models"
and 16.1.2 "const Type Qualifier and Mirror ROM Function for Compact and Large Models"
provide notes on each memory model.

The mirror ROM function depends on the hardware of the FAMC-16L/LX/F series. For details,
refer to the hardware manual.

Figure 16.1-1 Accessing Variables Qualified by the const Type Qualifier for Hardware That Supports the
Mirror ROM Function

h'ff fEff < PCB

Area that can be Hf bank

accessed from an| : f : .

the 00 bank. ROM area Whﬁn uswg ’a é:gl&t%at has the mirror ROM function
h' ££ 4000 64 Kbytes such as the

Area that cannot

be accessed . 3
h £f 0000 |rom the h'00 bank. Accessing addresses h'4000 to hrffff in the h'00 bank

accesses the same addresses in the h'ff bank.
, Memory is not present at addresses h'4000 to h'ffff in
h’00 fEEE the h'00 bank. However, the system operates as if
ROM area h'ff the h'00 bank were being accessed.

bank image Addresses h'0000 to h'3fff in the h'ff bank cannot be

h' 00 4000 accessed from the h'00 bank.
22 %E;glé The addresses of the areas in the h'00 bank
h’00 0d00 depend on the chip.
RAM area
h’00 0100
h’”00 00cO
h7 00 0000 1/O area
<« DTB,SSB,USB
(For the MB90678) Single chip mode
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16.1 Using the Mirror ROM Function and const Type Qualifier

16.1.1 const Type Qualifier and Mirror ROM Function for Small
and Medium Models

For small and medium models in which the data area is restricted to within 64 Kbytes,
variables are accessed using 16-bit addressing on the premise that the variables are
mapped in the bank pointed to by the DTB.

The mirror ROM function enables variables that are mapped in the h’'ff bank to be
accessed using 16-bit addressing.

m  Allocating Sections of Initialized Variables

For small and medium models, the data area that can be used is restricted to one bank within
64 Kbytes. As a result, variables are accessed using 16-bit addressing on the premise that the
variables are in the bank pointed to by the DTB.

Figure 16.1-2 "Output Sections and Their Allocation for Small and Medium Models" shows the
relationship between the output sections of variables for which initial values are specified and
their allocation in memory for small and medium models.

Figure 16.1-2 Output Sections and Their Allocation for Small and Medium Models

Variable qualified by the const type qualifier Initialized variable

const int ¢ datal; int i data  =123;

fec907 fec907
S o ) e

) * When the variable is accessed, the
The area CONST of a variable ROM area ROM area is accessed directly.
qualified by the const type qualifier The initial value area DCONST is
is allocated in the ROM area. CONST allocated in the ROM area. The area

INIT that is accessed at execution is
DCONST allocated in the RAM area.

For an initialized variable, the total
size of the required ROM and RAM
RAM area areas must be twice the size of the
defined variable.

INIT The startup routine transfers the initial
value in the ROM area to the variable
area in the RAM area.

For small and medium models, a variable qualified by the const type qualifier is output to the
CONST section. At linkage, this CONST section is allocated in the ROM area of the h'ff bank.
Normally, a CONST section present somewhere other than the bank pointed to by the DTB
cannot be accessed using 16-bit addressing. If hardware that supports the mirror ROM function
is used, however, a variable in the CONST section allocated at a defined location in the ROM
area can be accessed using 16-bit addressing.
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CHAPTER 16

MAPPING VARIABLES QUALIFIED WITH THE TYPE QUALIFIER CONST

m Notes on Using the Mirror ROM Function

The areas at which variables in the h'ff bank can be accessed by the mirror ROM function using

16-bit addressing depend on the hardware of the F2MC-16L/LX/F series. Table 16.1-1 "Scope
of Use of the Mirror ROM Function" lists the areas supported by the MB90670 series.

Table 16.1-1 Scope of Use of the Mirror ROM Function

Product MB90671 MB90672 MB90673 MB90P673
Starting address h'ffc000 h'ff8000 h'ff4000 h'ff4000
Ending address hffffff hffffff hffffff hffffff

Variables mapped within the range listed above can be accessed using 16-bit addressing in the
same way as accessing other variables mapped by a function in the h’00 bank. This is possible
because, when addresses h’0000 to h’ffff, h’8000 to hffff, or h’c000 to h'fff in the h’00 bank are
accessed, the CPU unconditionally accesses the same area in the h'ff bank. Therefore, when
the area CONST section of a variable qualified by the const type qualifier is allocated within the
range listed above, the variable area in the ROM area can be accessed directly using 16-bit
addressing without using the _ _far type qualifier. As a result, using the startup routine to
transfer the initial values from the ROM area to the RAM area can be omitted for a variable
qualified by the const type qualifier. Because variables qualified by the const type qualifier are
present in the ROM area, initial values can of course be set at definition but the values cannot
be changed at execution.

Figure 16.1-3 "Using the Mirror ROM Function and Allocating Areas of a Variable Qualified by
the const Type Qualifier (for a Small Model)" shows an example of allocating areas of a variable
qualified by the const type qualifier for a small model.

Figure 16.1-3 Using the Mirror ROM Function and Allocating Areas of a Variable Qualified by the const
Type Qualifier (for a Small Model)
ROM area

h' ff fEff <« PCB

hoEE ££54 The area CONST section of a
@ -aL 0 variable qualified by the const type
@ -ro ROM_AREA=0xFF0000/0xFFFFFF b £E 4000 qualifier is present in the h'ff bank.
@ -ra RAM_AREA=0x000190/0x000CFF . . B .
@ -sc DATA/BYTE+INIT/BYTE+DIRDATA/PAGE+DIRINIT/WORD DIRCONST I When this area in the h'00 banl_( 5

+STACK/BYTE=RAM AREA accessed, the CONST section in

@ -sc CODE/BYTE+DCONST/BYTE+DIRCONST/BYTE=ROM AREA DCONST 7 the h'ff bank is accessed
@ -sc CONST/const/BYTE=0xFF4000 unconditionally. As a result, the
€ -rg 0 i CODE value need not be transferred from
V:: *ml *r20¥softunc¥* ¥CONS‘1‘7‘*¥LS‘L‘¥CONS‘1‘ .mpl h’ff 0000 the ROM area tO the RAM area.
€ -pl 6 == .
@ -pw 132 In addition, because the variable
@ -alin * :¥softune¥*¥CONST_**¥YLSTY 100 4000 I:'—-— can be accessed using 16-bit
@ -alout *:¥softune¥*¥YCONST_**¥LSTY N addressing, the code is smaller
@ -na STACK than the definition that
@ -Xals accompanies the _ _far type
@ -Xalr DIRINIT 33 qualifier for accessing outside of
@ w1 DIRDATA the bank.
e e+ DPR
¢ -a INIT led  Theinitial value in the ROM area is
€ -cpu MB90678 transferred to the variable area in
@ -o *:¥softune¥*¥CONST_**¥ABS¥CONST_** abs DATA the RAM area.

1700 0190

Register bank
00 0180
1700 0000 DTB,SSB,USB
RAM area

<Notes>

Note the following points regarding use of the mirror ROM function:

- Map variables qualified by the const type qualifier up to address h'ff53 in the h'ff bank.




16.1 Using the Mirror ROM Function and const Type Qualifier

Interrupt vectors are mapped between addresses h'ff54 and h'ffff in the h'ff bank. If a
variable is mapped in this area, interrupt operations will be unpredictable.

- Allocate the area for variables qualified by the const type qualifier so that the area is
accommodated in the area determined for each chip in the h'ff bank. If a variable exceeds
the area, accessing using 16-bit addressing will not be possible.

- Do not allocate variable area or a stack in the area determined for each chip such as
addresses h’'4000 to h’ffff or h'8000 to h'ffff in the h’00 bank. Because the h'ff bank is
accessed, the value of a variable or stack in this area will be unpredictable.
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CHAPTER 16 MAPPING VARIABLES QUALIFIED WITH THE TYPE QUALIFIER CONST

16.1.2 const Type Qualifier and Mirror ROM Function for
Compact and Large Models

For compact and large models, variables are accessed using 24-bit addressing.

Therefore, the restriction dependent on the setting of the DTB register for small and

compact models does not apply.

m Allocating Sections of Initialized Variables

For compact and large models, the variable area can be allocated in multiple banks.
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variables are always accessed using 24-bit addressing. Therefore, the restriction dependent on
the setting of the DTB register for small and compact models does not apply. The bank pointed
to by the DTB register is accessed using 16-bit addressing only when a variable qualified by the
___near type qualifier is accessed.

When defining a variable qualified by the _ _const type qualifier, specify the _ _const type
qualifier only, or specify the _ _const type qualifier and the _ _far type qualifier. For compact
and large models, a variable qualified by the _ _const type qualifier is output to a section called
"CONST_module name."

Figure 16.1-4 "Output Sections and Their Allocation for Compact and Large Models" shows the
relationship between the output sections of variables for which initial values are specified and
their allocation in memory for compact and large models.

Figure 16.1-4 Output Sections and Their Allocation for Compact and Large Models

Variable qualified by the const type qualifier Initialized variable

const int ¢ datal; int i data =123;

y A
CONST * [ INT * | [DCONST 4
Link <«
The area CONST_* of a variable v
qualified by the const type qualifier is ROM area

allocated in the ROM area.
When the variable is accessed, the ROM [ CONST *
area is accessed directly.

DCONST * The initial value area DCONST_* is allocated in
— the ROM area. The area INIT_* that is accessed
at execution is allocated in the RAM area.

RAM area For an initialized variable, the total size of the
required ROM and RAM areas must be twice the
size of the defined variable.

INIT_* The startup routine transfers the initial value in the
= ROM area to the variable area in the RAM area.

Note: The asterisk (*) in the section name indicates the module name.

For compact and large models, a variable qualified by the const type qualifier is output to a
section called "CONST_module name." At linkage, this CONST_module section is allocated in
the ROM area. Because a variable is accessed using 24-bit addressing, the ROM area can be
accessed directly.



16.1 Using the Mirror ROM Function and const Type Qualifier

m Notes on Using the Mirror ROM Function

The areas where variables in the h'ff bank can be accessed by the mirror ROM function using
16-bit addressing depend on the hardware of the F2MC-16L/LX/F series.

For compact and large models, specify the const type and _ _near type qualifiers when the
mirror ROM function is used to access a variable qualified by the const type qualifier using 16-
bit addressing. The variable will then be output to the CONST section that can be accessed
when the bank pointed to by the DTB register is accessed using 16-bit addressing. At linkage,
allocate this CONST section in an area supported by the mirror ROM function.

Figure 16.1-5 Using the Mirror ROM Function and Allocating Areas of a Variable Qualified by the const
Type Qualifier (for a Large Model)

h'ff f£Eff The area CONST section of a
INTVECT variable qualified by the const type
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@ -ra RAM AREA1=0x000190/0x000CFF
@ -ra RAM AREA2=0x010000/0x01FFFF

3
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@ -ra RAM_AREA3=0x020000/0x02FFFF DCONST_main
@ -ra RAM AREA4=0x030000/0x03FFFF -
@ -sc DIRDATA/dir/PAGE+DIRINIT/dir/BYTE=RAM AREAL h’fe 0000 CODE_main
@ -sc DATA main/data/BYTE4INIT main/data/BYTE=RAM AREA2 «{pcB
DATA_sub/data/BYTE+INIT_sub/data/BYTE=RAM_AREA3
sc STACK/BYTE=RAM_AREA4 DCONST_sub
CODE_sub/code /BYTE4DCONST_sub/const/BYTE=ROM_AREA3
@ -sc CODE_main/code/BYTE4DCONST main/const/BYTE=ROM AREA2 | h'fd 0000 CODE_sub ROM area

@ -sc DIRCONST/dirconst/BYTE=ROM AREAl

@ -sc CONST/BYTE=0xFF4000

@ -m *:¥*¥LST¥for text.mpl h103 0000 STACK SSB.USB RAM area
@ -pl 60 < s

@ -pw 132

- s B o INIT_sub — .
¢ i T e ety — " [ Theinitial value in the ROM area
ooTasoub T —tex : h’02 0000 DATA_sub is transferred to the variable area

¢ e in the RAM area.

@ -Xalr .
@ -w 1 INIT_main |«
e -g -
@ —ewno h’01 0000 DATA_main
@ -a

@ -cpu MB90678

@ -o *:¥*¥for text¥ABS¥for text.abs

H

_xXdof h’00 4000 When this area in the h'00 bank
DIRINIT e is accessed, the CONST section
in the h'ff bank is accessed
DIRDATA DPR unconditionally. As a result, the
< value need not be transferred
Register bank from the ROM area to the RAM
h'00 0180 area. In addition, specifying the

_near tgrpe qualifier enables
/O area | pra the variable to be accessed
h*00 0000 using 16-bit addressing.
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CHAPTER 16 MAPPING VARIABLES QUALIFIED WITH THE TYPE QUALIFIER CONST

16.2 const Type Qualifier When the Mirror ROM Function Cannot

Be Used

This section provides notes on mapping variables qualified by the const type qualifier
for hardware that does not support the mirror ROM function.

The -ramconst option can be specified to output a section allocated to the ROM and
RAM areas. In addition, specifying the const type and _ _far type qualifiers enables
the variable area in the ROM area to be accessed directly using 24-bit addressing.

m  Mapping Variables Qualified by the const Type Qualifier for Hardware That Does Not Support the
Mirror ROM Function
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The F2MC-16L/LX/F series includes hardware that does not support the mirror ROM function.
For systems that use such hardware, the ROM area in the h'ff bank cannot be accessed using
16-bit addressing. This applies to small and compact models where the data area is accessed
using 16-bit addressing.

For these types of systems, the following two methods are available for mapping variables
qualified by the const type qualifier:

» Specify the -ramconst option at compilation.
» Specify the const type and _ _far type qualifiers at definition.

Sections 16.2.1 "Mapping Variables Qualified by the const Type Qualifier to RAM Area" and
16.2.2 "Specifying the const Type and _ _far Type Qualifiers at Definition" describe these two
methods.

For compact and large models where the data area is accessed using 24-bit addressing,
because the variable area in the ROM area can be accessed directly, the above problem does
not occur.



16.2 const Type Qualifier When the Mirror ROM Function Cannot Be Used

16.2.1 Mapping Variables Qualified by the const Type Qualifier to
RAM Area

For small and medium models in which the mirror ROM function cannot be used
because the data area is restricted to within 64 Kbytes, specify the -ramconst option at
compilation. Specifying the -ramconst option will enable the area of a variable
gualified by the const type qualifier to be mapped in the RAM area in the same way as
a normal variable.

m  Specification of the -ramconst Option and Output Sections

If hardware not supporting the mirror ROM function is used, a method is available for mapping a
variable qualified by the const type qualifier in the RAM area in the same way as a normal
variable.

In this case, specify the -ramconst option at compilation. Specifying the -ramconst option will
output the areas of a variable qualified by the const type qualifier to the CONST and CINIT
sections. The CONST section is allocated in the ROM area. The CINIT section is allocated in
the RAM area. The startup routine transfers the initial value in the CONST section to the CINIT
section. The CINIT section in the RAM area is accessed from a function. When a program is
executed, this CINIT section becomes read-only.

Figure 16.2-1 "Specifying the -ramconst Option (for a Small Model)" shows the relationship
between the output sections when the -ramconst option is specified for a small model.

Figure 16.2-1 Specifying the -ramconst Option (for a Small Model)

Variable qualified by the const type qualifier
const int c_datal=123;

fcc907s
-ramconst option

CONST | [ CONST | [ CINIT |
Link Link

The initial value area of a * * The initial value area CONST

variable qualified by the const ROM area ROM area of a variable qualified by the

type qualifier is allocated in CONST CONST const type qualifier is

the ROM area. When the allocated in the ROM area.

variable is accessed, the The startup routine transfers

ROM area is accessed. the value to the variable area
CINIT in the RAM area.

CINIT When the variable is

accessed, the RAM area is
accessed.

Figure 16.2-2 "Mapping a Variable Qualified by the const Type Qualifier to RAM Area (for a
Small Model)" is an example of mapping when the -ramconst option is specified for a small
model.

In this example, the CONST section is allocated in the h’'ff bank of the ROM area and the CINIT
section is allocated in the h’'00 bank of the RAM area at linkage. The startup routine transfers
the value from the CONST section to the CINIT section.
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CHAPTER 16 MAPPING VARIABLES QUALIFIED WITH THE TYPE QUALIFIER CONST

Figure 16.2-2 Mapping a Variable Qualified by the const Type Qualifier to RAM Area (for a Small Model)

h'ff ffff < PCB
INTVECT
h'ff  ££54
¢ -aL 0 When a variable qualified by the
@ -ro ROM_AREA=0xFF0000/0xFFFFFF ConEr const type qualifier is accessed
@ -ra RAM_AREA=0x000190/0x000CFF DIRCONST _ — | using 16-bit addressing, the initial
@ -sc DATA/BYTE+INIT/BYTE+DIRDATA/PAGE+DIRINIT/WORD value in the ROM area must be
+CINIT/BYTE+STACK/BYTE=RAM_AREA DCONST [ | transferred to the variable area in
@ -sc CODE/BYTE+DCONST/BYTE+DIRCONST/BYTE RAM area.
+CONST/BYTE=ROM_AREA
¢ -rg 0 .. CODE
@ -m *:¥softune¥*¥CONST_**¥LST¥CONST_**.mpl h'£f 0000 ROM area
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@ -pw 132
@ -alin *:¥softune¥*¥CONST **¥YLST¥
@ -alout *:¥softune¥*¥CONST_*¥LSTY¥ STACK RAM area
¢ -na CINIT =
@ -Xals (F
¢ Xalx DIRINIT  [€T
e -w 1l
e -g DIRDATA
@ -cwno <— DPR
e -a
@ -cpu MB90678 d  Theinitial value in the ROM area
@ -o *:¥softune¥*¥CONST_*¥ABSY¥CONST_*.abs INIT is transferred to the variable area
DATA in the RAM area.
h’00 0190 -
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h’00 0180
1/0 area
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16.2 const Type Qualifier When the Mirror ROM Function Cannot Be Used

16.2.2 Specifying the const Type and _ _far Type Qualifiers at
Definition

For small and medium models where the data area is restricted to within 64 Kbytes,
variables are accessed using 16-bit addressing on the premise that the variables are
mapped in the bank pointed to by the DTB.

If hardware not supporting the mirror ROM function is used, specifying the const type
and _ _far type qualifiers will enable the variable area in the ROM area to be accessed
directly using 24-bit addressing.

m Output Sections of Variables Qualified by the const Type and _ _far Type Qualifiers

For small and medium models, the available data area is restricted to within one bank (64
Kbytes). Variables are therefore accessed using 16-bit addressing on the premise that the
variables are mapped in the bank pointed to by the DTB.

For hardware not supporting the mirror ROM function, specify the const type and _ _far type
qualifiers to enable direct access of a variable qualified by the const type qualifier in the ROM
area. A code for 24-bit addressing will then be generated only when a variable qualified by the
const type qualifier that has been mapped in the ROM area is accessed.

Figure 16.2-3 "Output Sections of a Variable Qualified by the const Type and _ _far Type
Qualifiers (for a Small Model)" shows the relationship between the output sections of a variable
for which an initial value has been specified and the sections of a variable qualified by const
type and _ _far type qualifiers. This applies to small and medium models.

Figure 16.2-3 Output Sections of a Variable Qualified by const Type and _ _far Type Qualifiers (for a
Small Model)

Variable qualified by const type and _ _far type qualifiers Initialized variable

const  far int c datal; int i data =123;

y A
Ly | [oconst
_Link

. o ROM area
The area of a variable qualified by const type and "
__far type qualifiers is allocated in the ROM CONST_
area. When the variable is accessed, the ROM N ) .
area is accessed directly. The initial value area DCONST is allocated in the

DCONST ROM area. At execution, the area INIT to be
accessed is allocated in the RAM area.

For an initialized variable, the total size of the
RAM area required ROM and RAM areas must be twice the
size of the defined variable.

INIT The startup routine transfers the initial value in the
ROM area to the variable area in the RAM area.

Note: The asterisk (*) in the section name
indicates the module name.
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Figure 16.2-4 Mapping a Variable Qualified by const Type and _ _far Type Qualifiers (for a Small Model)
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Figure 16.2-4 "Mapping a Variable Qualified by the const Type and _ _far Type Qualifiers (for a
Small Model)" is an example of mapping when a variable qualified by const type and _ _far type
qualifiers is defined for a small model.

In this example, the const_* section is allocated in the h'ff bank of the ROM area at linkage. A
code for 24-bit addressing is generated only when a variable mapped in the const_* section is

accessed.

@ -AL 0

@ -ro ROM_AREA=0xFF0000/0xFFFFFF

@ -ra RAM_AREA=0x000190/0x000CFF

@ -sc DATA/BYTE+INIT/BYTE+DIRDATA/PAGE+DIRINIT/BYTE

+STACK/BYTE=RAM_AREA

@ -sc CODE/BYTE+DCONST/BYTE+DIRCONST/BYTE
+CONST_*/BYTE=ROM_AREA

-rg 0

-m *:¥softune¥*¥const_ *r¥LST¥const *.mpl

-pl 60

-pw 132

-alin *:¥softune¥*¥const *¥YLSTY

-alout *:¥softune¥*¥Yconst *¥LSTY

-na

-Xals

-Xalr

-w 1

-9

-cwno

P EEE®®®®®®® ®

cpu MB90678
-0 *:¥softune¥*¥const *YABS¥const_*.abs

h'ff ffff

INTVECT [« PCB
h'ff £f54

When the _ _far type qualifier is

For small and medium models, a variable is accessed
using 16-bit addressing on the premise that the variable
is mapped in the h'00 bank pointed to by the DTB.

To access a variable mapped outside of the h'00 bank,
use the _ _far type qualifier to specify access using 24-
bit addressing when the variable is defined.

CONSTE also specified for a variable
DIRCONST  |— qualified by the const type
qualifier to access the variable
DCONST using 24-bit addressing, the
CONST section allocated in the
ROM area is accessed directly.
h’ff 0000 CODE Y
ROM area
RAM area
STACK The initial value in the ROM area
DIRINIT leH is transferred to the variable
area in the RAM area.
DIRDATA
DPR
INIT €
DATA
h’00 0190
Register bank
h’00 0180

1/0 area
h’00 0000 DTB,SSB,USB




CHAPTER 17 MAPPING PROGRAMS IN WHICH THE
CODE AREA EXCEEDS 64 Kbytes

This chapter describes how to map programs in which the code area of the program to
be created exceeds 64 Kbytes.

For a system in which the code area exceeds 64 Kbytes, it is recommended that a
small or compact model be used and that the _ _far type qualifier be specified in the
functions.

17.1 "Functions Calls of Programs in Which the Code Area Exceeds 64 Kbytes"
17.2 "Using Calls For Functions Qualified by the _ _far Type Qualifier"

17.3 "Mapping Functions Qualified by the _ _far Type Qualifier"

17.4 "Using Calls for Functions Qualified by the _ _near Type Qualifier"

17.5 "Mapping Functions Qualified by the _ _near Type Qualifier"
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CHAPTER 17 MAPPING PROGRAMS IN WHICH THE CODE AREA EXCEEDS 64 Kbytes

17.1 Functions Calls of Programs in Which the Code Area

Exceeds 64 Kbytes

When creating a system in which the code area exceeds 64 Kbytes, use a medium or
large model in which the functions are called using 24-bit addressing.

For a system in which the code area exceeds 64 Kbytes, however, function calls using
24-bit addressing can increase the code size.

m Function Calls Using 24-Bit Addressing
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Table 17.1-1 "Type Qualifiers, Memory Models, and Code Section Names" lists the relationship
between the output code section names for type qualifiers and memory models of the functions.

Table 17.1-1 Type Qualifiers, Memory Models, and Code Section Names

Type qualifier specification Small or compact model Large or medium model
None CODE CODE_module name
___near CODE CODE_module name
__far CODE_module name CODE_module name

As listed in Table 15.1-1 "fcc907 Memory Models" the fcc907 uses a medium or large model
when creating a program in which the code area for the entire system exceeds 64 Kbytes.

For a medium or large model, a code for 24-bit addressing is generated unconditionally when a
function is called. When multiple banks are used and there are frequent calls between the
banks, a problem will not occur even if a code for 24-bit addressing is generated. For a system
in which the code area exceeds one bank (64 Kbytes), accessing functions using 24-bit
addressing can increase the size of the code area.

For small or compact models in which function calls are accessed using 16-bit addressing, a
function qualified by the _ _far type qualifier can be accessed using 24-bit addressing. Section
17.2 "Using Calls for Functions Qualified by the _ _far Type Qualifier" explains how to define
and map functions qualified by the __far type qualifier for small and compact models.



17.2 Using Calls For Functions Qualified by the _ _far Type Qualifier

17.2 Using Calls For Functions Qualified by the _ _far Type
Qualifier

This section describes how to specify the __far type qualifier in a function for small
and compact models in which functions are accessed using 16-bit addressing.

It is recommended that the _ _far type qualifier be specified for functions that are not
frequently called or functions that are called from all functions.

m Specifying the _ _far Type Qualifier in a Function for Small and Compact Models

When creating a system in which the code area exceeds 64 Kbytes, a code for 24-bit
addressing will be generated if a medium or large model in which all functions are accessed
using 24-bit addressing is used. Even for a small model in which calling within a bank is a
default, the _ _far type qualifier can be specified to generate a code for 24-bit addressing.

When creating a system in which the code area exceeds 64 Kbytes, it is recommended that the
__far type qualifier be specified for some of the functions at compilation for a small or compact
model.

m Dividing Modules and Specifying the __far Type Qualifier in a Function

The tree structure shown in Figure 17.2-1 "Function Call Relationship and Mapping Image 1" is
assumed for the relationship of all function calls in the system to be developed.

Figure 17.2-1 Function Call Relationship and Mapping Image 1

Bank h'ff \
/ main( )
'.llIo.. Bank h'fe
/\ Tten., ) (, , Function modified by the )
‘e )_ _far type modifier

sub_1() sub_2() sub_3()

sub_1_1() sub_1 2() sub_2_1() sub_2_2() sub_3_1() sub_3_2()

J
sub_1 1 1() K /

K sub_1 2 1() sub_1 2 2() /
=3 Calls within a bank. Accessed

using 16-bit addressing.

««+«¥» Calls between banks. Accessed
using 24-bit addressing.

In this example, function main( ) calls the three functions sub_1( ), sub_2( ), and sub_3(). For
subsequent functions sub_1 xx(), it is assumed that functions sub_2 xx() and sub_3 xx() are
also called using the same route via sub_1( ). In addition, function sub_3( ) is not frequently
called.

The relationship of these calls is used to divide the banks in which the functions are to be
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mapped. In this example, function sub_3( ) not called frequently and function sub_3( ) are
mapped in bank h’fe. The other functions are mapped in bank h'ff.

When a system in which the calls have this type of relationship is compiled using a medium or
large model, a code for 24-bit addressing will be generated for all function calls. Even when
function sub_1 1( ) is called from function sub_1( ), a code for 24-bit addressing will be
generated in the same way as when function sub_1( ) is called in the same bank from function
main( ).

Assume that the _ _far type qualifier is specified in function sub_3( ) for compilation using a
small or compact model. Then, when the function is mapped as shown in Figure 17.2-1
"Function Call Relationship and Mapping Image 1" a call for outside the bank using 24-bit
addressing will be generated only when function sub_3() is called from function main(). For all
other functions, the functions will be called using 16-bit addressing within the bank.

As shown in this example, it is recommended that the _ _far type qualifier be specified for small
and compact models in which processing of the functions can be easily divided. Using the _
_far type qualifier can reduce the size of the code and increase execution speed.

Figure 17.2-2 Function Call Relationship and Mapping Image 2

/ Bank h'ff ﬁ

main( )

“Funcfion qualified by the
_ _far type qualifier

."'i‘ +
com()
) —>» Calls within a bank. Accessed
Bank h'fe using 16-bit addressing.
Function com( ) is called from all ++»» Calls between banks. Accessed

functions in the system. using 24-bit addressing.

Two methods are available if processing of the functions cannot be easily divided. In one
method, as shown in Figure 17.2-2 "Function Call Relationship and Mapping Image 2" specify
the _ _far type qualifier to map a common function into a separate bank because the common
function can be called from all locations in a system. In the other method, as shown in Figure
17.2-3 "Function Call Relationship and Mapping Image 3" specify the _ _far type qualifier to
map a function that is not called frequently into a separate bank. Determine the functions to be
qualified by the _ _far type qualifier based on the system to be created.



17.2 Using Calls For Functions Qualified by the _ _far Type Qualifier

Figure 17.2-3 Function Call Relationship and Mapping Image 3

Bank h'ff

sub_a_1() sub_a 2()

sub_a 1 _1()

\ sub_a 2 1() sup a 2 2()

\

---> Calls between banks. Accessed using

sub_d()

/T~

sub_d_1() sub_d_2()

sub_c_1()
o

Function sub_d( ) is not called frequently.

/— Bank h'fe ﬁ
Function modified by

®** a4y the _fartype modifier

/

16-bit addressing.

24-bit addressing.

—> Calls within a bank. Accessed using

[Tip]
Softune C Analyzer:

The Softune C Analyzer displays mutual calls of the analyzed functions. The relationship of
the displayed function calls is helpful in determining the functions to be qualified by the __far

type qualifier.
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17.3 Mapping Functions Qualified by the __far Type Qualifier

This section provides notes on mapping functions qualified by the _ _far type qualifier.
The output section name of a function is dependent on the memory model specified at
compilation. A function qualified by the _ _far type qualifier is always output to a
section called "CODE_module name."

m Memory Models and Output Sections of Functions Qualified by the __far Type Qualifier

194

The output section name of a function is dependent on the memory model specified at
compilation. The output section of a function qualified by the _ _far type qualifier, however, is
not dependent on the memory model. The function is always output to a section called
"CODE_module name." Sections 17.3.1 "Functions Qualified by the _ _far Type Qualifier for
Small and Compact Models" and 17.3.2 "Functions Qualified by the _ _far Type Qualifier for
Medium and Large Models" provide notes on mapping functions qualified by the _ _far type
qualifier for each memory model.



17.3.1 Functions Qualified by the _ _far Type Qualifier for Small

17.3 Mapping Functions Qualified by the _ _far Type Qualifier

and Compact Models

This section provides notes on mapping functions qualified by the _ _far type qualifier

for small and compact models in which functions are accessed using 16-bit

addressing. For small and compact models, a function qualified by the _ _far type
qualifier is output to a section called "CODE_module name" as a result of compilation.

m Code Sections of Small and Compact Models

Figure 17.3-1 "Linkage of Functions Qualified by the

__far Type Qualifier for Small and

Compact Models" shows an image of linkage of function qualified by the __far type qualifier for
small and compact models.

For small and compact models, a function for which a type qualifier is not specified is output to a
CODE section as a result of compilation. At linkage, this CODE section is allocated in the ROM
area pointed to by the PCB. This CODE section is always allocated in the area of bank h'ff. A
function qualified by the _ _far type qualifier is output to a section called "CODE_module name"
as a result of compilation. Because a function output to this section is accessed using 24-bit
addressing, a section called "CODE_module name" can be allocated in a ROM area other than
the ROM area pointed to by the PCB.

Figure 17.3-1 Linkage of Functions Qualified by the _ _far Type Qualifier for Small and Compact Models

a.c

b.c

C.C

void b(void)
{ .
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}

void __far B_faxvoid)
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b.obj

A function qualified by the
_ _far type qualifier is
output to a section called
"CODE_module name."

CODE

Compile

CODE_b

Assemble
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c.obj

Link | Data section

CODE
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CODE_b
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m Example of Mapping Functions Qualified by the _ _far Type Qualifier (for a Small Model)

Figure 17.3-2 "Example of Mapping Functions Qualified by the _ _far Type Qualifier (for a Small
Model)" shows an example of mapping functions qualified by the _ _far type qualifier compiled
using a small model.

Figure 17.3-2 Example of Mapping Functions Qualified by the _ _far Type Qualifier (for a Small Model)

h'ff ffff < PCB
) INTVECT
h'ff ff54
@ -AL 0
@ -ro ROM_2=0xFE0000/0xFEFFFF
@ -ro ROM_1=0xFF0000/0xFFFEFF DIRCONST The initial value in the ROM area
@ -ra RAM _AREA=0x000190/0x000CFF CONST m is transferred to the variable area
@ -sc DATA/BYTE+INIT/BYTE+DIRDATA/PAGE+DIRINIT/BYTE — in [he RAM area.
+STACK/BYTE=RAM AREA X DCONST - :
@ -sc CODE_m/code/BYTE=ROM 2 . . pn
@ -sc CODE/BYTE+*/const/BYTE+DIRCONST/BYTE=ROM_1 The section of a fUnC1IQ{1 qyallfled
@ -rg 0 CODE by the _ _far type qualifier is
@ -m *:¥Softune¥*¥LST¥far *.mpl h’ff 0000 allocated in the h'fe bank.
S -pl i?z ----------------------------------------- ---1{-- Code for 24-bit addressing is
b o in r¥Softuneyiyfar *yLTY generated only when the function
@ -alout * tune¥*¥far f*¥LSTY mapped here is accessed.
o o - CODE_m
¢ -Xals h ROM area
@ -Xalr
e -w 1 e
@ -g
@ -cuno STACK RAM area
e -a
@ -cpu MB90678 DIRINIT T
@ -o *:¥Softune¥l*¥far *¥ABS¥far *1l.abs DIRDATA l<1—— DPR
For small and compact models, a function is INIT <
accessed using 16-bit addressing on the premise
that the code area is mapped in the h'ff bank DATA
pointed to by the PCB. h’00 0190 Register bank [« DTB,SSB,USB

To map a function outside of the h'ff bank, use the h’00 0180

_ _far type qualifier to define the function so that it
is accessed using 24-bit addressing. H 00 0000

In this example, the h’'ff and h’fe banks are a ROM area. The following sections are allocated in
the h'ff bank:

» CODE (code area of a function for which a type qualifier is not specified)
» DCONST (initial value area of a variable)

» CONST_m (area of a variable qualified by the const type and _ _far type qualifiers for
module m)

» DIRCONST (initial value area of a variable qualified by the _ _direct type qualifier)

The section CODE_m of a function qualified by the _ _far type qualifier for module m is
allocated in the h'fe bank.

The h’00 bank is a RAM area. The following sections are allocated in the h’00 bank:
* |0O_REG (I/O register variable area)

» DATA (variable area)

* INIT (area of an initialized variable)

» DIRDATA (area of a variable qualified by the _ _direct type qualifier)

» DIRINIT (area of an initialized variable qualified by the _ _direct type qualifier)

» STACK (user stack and system stack)

Refer to this example to allocate a section based on the system to be created.
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17.3.2 Functions Qualified by the _ _far Type Qualifier for

Medium and Large Models

This section provides notes on mapping functions qualified by the _ _far type qualifier
for medium and large models in which functions are accessed using 24-bit addressing.
For medium and large models, functions for which a type qualifier is not specified and
functions that are qualified by the _ _far type qualifier are output to sections called

"CODE_module name."

m Code Sections of Medium and Large Models

Figure 17.3-3 "Linkage of Functions Qualified by the _ _far Type Qualifier for Medium and Large
Models" shows an image of linkage of functions qualified by the _ _far type qualifier for medium
and large models.

For medium and large models, a function for which a type qualifier is not specified is output to a
section called "CODE_module name" as a result of compilation. A function qualified by the _
_far type qualifier is also output to a section called "CODE_module name." As a result, a
function qualified by the _ _far type qualifier is output to the same section as a function for which
a type qualifier is not specified.

The functions output to these sections are accessed using 24-bit addressing. As a result, a
section called "CODE_module name" can be allocated in a ROM area other than the ROM area

pointed to by the PCB.

Figure 17.3-3 Linkage of Functions Qualified by the _ _far Type Qualifier for Medium and Large Models

a.obj
a(void)
: Compile CODE_a
a.c void ;7fd a_fatvoid) [ Assemble CODE_a
¢ Data section
b.obj
CODE_b
b.c ‘ Compile  |CODE_b Link & Data section
’ __far B_fatvoid) | Assemble
° Data section
CODE_c
c.obj
c(void)
° Functions for which a type qualifier is
c.C * compie [CODE_¢ not specified and functions that are
far ¢ fatvoid qualified by the _ _far type qualifier are
. Assemble output to sections called
. ) "CODE_module name.
Data section
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m Example of Mapping Functions Qualified by the _ _far Type Qualifier (for a Large Model)

Figure 17.3-4 "Example of Mapping Functions Qualified by the _ _far Type Qualifier (for a Large
Model)" is an example of mapping functions qualified by the _ _far type qualifier compiled using
a large model.

Figure 17.3-4 Example of Mapping Functions Qualified by the _ _far Type Qualifier (for a Large Model)

DCONST_space2
CONST_space2

@ -AL 0
@ -ro ROM3=0xFD0000/0xFDFFFF

@ -ro ROM2=0xFE0000/0XFEFFFF
xFF0000/0XFFFFFF
)CFF

h'ff f£fff < PCB
INTVECT
h'ff ff54

DIRCONST
DCONST_spacel

CODE_space2

pace3=0x020000/0x02FFFF | S e ) eeeeeeeeeeeaeeaeeeaenenn e
e - =0x030000/0x03FFFF
@ RDATA/dir/PAGE CONST_spacel

1 DCONST_space3|
e -
e wee 0000 LCODE_spacel CONST_space3
d
@ space3/code pace3/const/BYTE=ROM3
@ ce2/code /BYTE=ROM2 hea 0000 | CODE_space3
@ -sc *spacel/code/BY pacel /const/BYTE

+*/dirconst/BYT ode/BYTE+* /const/BYTE=ROM1
@ -rg 0 ROM area
@ -m *:¥Softune¥*¥far *¥LST¥far *.mpl
¢ -pl 60 RAM area
e -pw 132
@ -alin *:¥Softune¥*¥far *¥LSTY
@ -alout *:¥Softune¥*¥far *¥LST¥ DIRINIT < STACK
@ -na DIRDATA h’03 0000
@ -Xals € DPR| =remmmmemmmeremmsese s e e
@ -Xalr
@ -w 1 INIT_spacel INIT_space3 €
e -g —
@ -cwno DATA_spacel w02 oooo| DATA_space3
€ -a h’00 0190 e [
@ -cpu MB90678 Register bank
h’00 0180

.abs

@ -o *:¥Softune¥*¥far *¥YABS¥far_ * INIT_space2 |«

wroo oono| MO area «DTB Ol

0000 | DATA_space2

A function qualified by the _ _far type qualifier is output to a section called "CODE_module
name."

In this example, the h'fd, h'fe, and h'ff banks are ROM area.
allocated in the h'fd bank:

The following sections are

» CODE_space3 (code area of module space3)

» CONST _space3 (variable area of a variable qualified by the const type qualifier of module
space3)

» DCONST_space3 (initial value area of a variable of module space3)
The following sections are allocated in the h’fe bank:
» CODE_space? (code area of module space?)

» CONST _space2 (variable area of a variable qualified by the const type qualifier of module
space?)

 DCONST_space? (initial value area of a variable of module space?)
The following sections are allocated in the h'ff bank:
» CODE_spacel (code area of module spacel)

» CONST spacel (variable area of a variable qualified by the const type qualifier of module
spacel)

» DCONST_spacel (initial value area of a variable of module spacel)
» DIRCONST (initial value area of a variable qualified by the _ _direct type qualifier)

In this example, the h’00, h'01, h’'02, and h'03 banks are in a RAM area. The following sections
are allocated in the h’00 bank:
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17.3 Mapping Functions Qualified by the _ _far Type Qualifier

* |O_REG (l/O register variable area)

« DATA_spacel (variable area of module spacel)

* INIT_spacel (area of an initialized variable of module spacel)

« DIRDATA (variable area of a variable qualified by the _ _direct type qualifier)
« DIRINIT (variable area of an initialized variable qualified by the _ _direct type qualifier)
The following sections are allocated in the h’'01 bank:

» DATA_space? (variable area of module space?2)

* INIT_space2 (area of an initialized variable of module space?2)

The following sections are allocated in the h’'02 bank:

» DATA_space3 (variable area of module space3)

* INIT_space3 (area of an initialized variable of module space3)

The following section is allocated in the h’03 bank:

e STACK (user stack and system stack)

Refer to this example to allocate each section based on the system to be created.
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17.4 Using Calls for Functions Qualified by the _ _near Type
Qualifier

This section describes how to specify the _ _near type qualifier in a function for
medium and large models in which functions are accessed using 24-bit addressing.
Specifying the _ _near type qualifier enables functions mapped in the same bank to be
accessed using 16-bit addressing.

m Specifying the _ _near Type Qualifier in Functions for Medium and Large Models

A medium or large model in which functions are accessed using 24-bit addressing is used for a
system in which most functions are called between banks. Even in a system such as this,
however, there are functions called only from functions mapped in the same bank and not called
from functions mapped outside of the bank. These functions are shown in Figure 17.4-1
"Function Call Relationship and Mapping Image 4". Because the scope of a variable declared
as static is within the module, this is equivalent to a function called within a bank. To access
functions called within a bank, 16-bit addressing will be sufficient. However, when functions are
compiled using a medium or large model, a code for 24-bit addressing will be generated for all
function calls. Therefore, the _ _near type qualifier can be specified for these functions so that
they will be mapped in the same bank as the function calling them. As a result, a code for
calling within a bank using 16-bit addressing can be generated even for medium and large
models in which accessing functions outside the bank are default.

Figure 17.4-1 Function Call Relationship and Mapping Image 4

Bank h'ff

) .......... /_ Bank h'fe \

ey
--------

Bank h'fc sub:T.B'E )
A. . v '. -: l._'A
/ Suh . .I: SUb_3_2()

) F... sub_2_2()
sub_1_1() 9 sub_2_1()
sub_corg) €=\

Bank h'fd

=3 Calls within a bank. Accessed
Iocal() using 16-bit addressing.

Function qualified by the . i
\ __near type qualifier / 7 e 5ing 24-bit
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17.4 Using Calls for Functions Qualified by the _ _near Type Qualifier

[Tip]
Softune C Analyzer:

The Softune C Analyzer displays mutual calls of the analyzed functions. The relationship of
the displayed function calls is helpful in determining the functions to be qualified by the _
_hear type qualifier.
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17.5 Mapping Functions Qualified by the _ _near Type Qualifier

This section provides notes on mapping functions qualified by the _ _near type
qualifier for medium and large models in which functions are accessed using 24-bit

addressing.

For medium and large models, a function qualified by the _ _near type qualifier is
output to a section called "CODE_module name" in the same way as other functions.

m  Memory Models and Output Sections of Functions Qualified by the _ _near Type Qualifier

The output section name of a function is dependent on the memory model specified at
compilation. For small and medium models, a function qualified by the _ _near type qualifier is
output to a CODE section in the same way as a function for which a type qualifier is not
specified.

For medium and large models, a function for which a type qualifier is not specified is output to a
section called "CODE_module name." A function qualified by the _ _near type qualifier is also
output to a section called "CODE_module name."

Figure 17.5-1 "Linkage of Functions Qualified by the _ near Type Qualifier for Medium and
Large Models" shows an image of linkage of functions qualified by the _ _near type qualifier for
medium and large models.

The function A_near( ) defined in module a is output to the CODE_a section. The function
B_near( ) defined in module b is output to the CODE_b section. In the same way, the function
C_near( ) defined in module c is output to the CODE_c section. At linkage, these sections are
allocated in the same bank as the module in which the function is defined.

Figure 17.5-1 Linkage of Functions Qualified by the _ _near Type Qualifier for Medium and Large Models
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17.5 Mapping Functions Qualified by the _ _near Type Qualifier

m  Example of Mapping Functions Qualified by the _ _near Type Qualifier (for a Medium Model)

For medium and large models, functions are accessed using 24-bit addressing using the PCB
register. For medium and large models, when a function qualified by the _ _near type qualifier
is called from a function for which a type qualifier is not specified, the calling function and called
function must be mapped in the same bank. The PCB that is set when calling a function for
which a type qualifier is not specified is used as is for calling a function qualified by the _ _near
type qualifier.

Figure 17.5-2 "Example of Mapping Functions Qualified by the _ near Type Qualifier (for a
Medium Model)" is an example of mapping functions qualified by the _ _near type qualifier
compiled using a medium model. The functions qualified by the _ _near type qualifier are
output to sections called "CODE_module name" in the same way as functions for which a type
qualifier is not specified.

Figure 17.5-2 Example of Mapping Functions Qualified by the _ _near Type Qualifier (for a Medium
Model)

@ -AL 0 n’ff fIff < PCB
@ -ro ROM3=0xFD0000/0xFDFFFF

@ -ro ROM2=0xFE0000/0xFEFFFF h'ff  ££54

@ -ro ROM1=0xFF0000/(
@ -ra spacel=0x000 DOCFF N
@ -sc */data/BYTE+ A/dir/PAGE+DIRINIT/dir/BYTE n'fe 0000 | CODE_space2

+STACK/stac spacel h'fE 4000
@ -sc CODE_space3/code/BYT! 3

@ -sc CODE_space2/code/BYTE=ROM2 DCONST | reererrermemmm e
@ -sc *spacel/code/BYTE+*spacel/const/BYTE
++/dirconst/BYTE+*/code/BYTE+* /const/BYTE=ROML DIRCONST [
@ -rg 0
@ -m *:¥Softune¥*¥near *¥LST¥near_ *.mpl
@ -pl 60 CODE_spacel CODE_space3
@ -pw 132 h’ff 0000 h’fd 0000
@ -alin *:¥Softune¥*¥near *¥LSTY¥
@ -alout *:¥Softune¥*¥near *¥LST¥
¢ na ROMarea @@
@ -Xals
¢ —Xalr RAM area
@ -w 1
e -g STACK
@ -cwno
e -a
b DIRINIT |<—
@ -cpu MB90678
@ -o *:¥Softune¥*¥near *YABS¥near *.abs
- - - DIRDATA
<DPR
INIT <
DATA
h’00 0190 -
Register bank
h’00 0180

.

In this example, the h’'fd, h'fe, and h’ff banks are ROM area. The following section is allocated
in the h’'fd bank:

» CODE_space3 (code area of module space3)

The following section is allocated in the h’fe bank:

« CODE_space?2 (code area of module space?2)

The following sections are allocated in the h'ff bank:

« CODE_spacel (code area of module spacel)

« DIRCONST (initial value area of a variable qualified by the _ _direct type qualifier)
« DCONST (initial value area of a variable)

e CONST (variable area of a variable qualified by the const type qualifier)

In this example, the h’00 bank is RAM area. The following sections are allocated in the h’00
bank:
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* |0O_REG (I/O register variable area)

» DATA (variable area)

» INIT (area of an initialized variable)

» DIRDATA (variable area of a variable qualified by the _ _direct type qualifier)

» DIRINIT (variable area of an initialized variable qualified by the _ _direct type qualifier)
» STACK (user stack and system stack)

Refer to this example to allocate each section based on the system to be created.
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CHAPTER 18 MAPPING PROGRAMS IN WHICH THE
DATA AREA EXCEEDS 64 Kbytes

This chapter describes how to map programs in which the data area of the program to
be created exceeds 64 Kbytes.

For a system in which the data area exceeds 64 Kbytes even slightly, it is
recommended that a small or compact model be used and that the _ _far type qualifier
be specified in the functions.

18.1 "Function Calls of Programs Where the Data Area Exceeds 64 Kbytes"

18.2 "Using Calls for Variables Qualified by the _ _far Type Qualifier"
18.3 "Mapping Variables Qualified by the _ _far Type Qualifier"

18.4 "Using Calls For Variables Qualified by the _ _near Type Qualifier"
18.5 "Mapping Variables Qualified by the _ _near Type Qualifier"
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CHAPTER 18 MAPPING PROGRAMS IN WHICH THE DATA AREA EXCEEDS 64 Kbytes

18.1 Function Calls of Programs Where the Data Area Exceeds
64 Kbytes

When creating a system in which the data area exceeds 64 Kbytes, a compact or large
model in which variables are accessed using 24-bit addressing is used.

For a system in which the data area exceeds 64 Kbytes, however, accessing variables
using 24-bit addressing can increase the size of the code area.

m  Accessing Variables Using 24-Bit Addressing

Table 18.1-1 "Data Section Names for Small and Medium Models" and Table 18.1-2 "Data
Section Names for Compact and Large Models" list the type qualifiers of variables and the
memory model specifications and output section names at compilation.

Table 18.1-1 Data Section Names for Small and Medium Models

Type qualifier specification Initial value Variable area Initial value area
- - specification name
_io | _ _direct |const | _ _near | far
DATA
o DATA
o] DATA_module
name
o] INIT DCONST
o 0 INIT DCONST
o] o] INIT_module DCONST_module
name name
o 0 CONST CINIT
o o o} CONST CINIT
o] o] o] CONST_module CINIT_module
name name
o] DIRDATA
0 o} DIRINIT DIRCONST
o] 10

206
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Table 18.1-2 Data Section Names for Small and Medium Models

Type qualifier specification Initial value Variable area Initial value area
- - specification name
___io | _ _direct |const |_ _near | far
DATA_module
name
0 DATA
o] DATA_module
name
(o] INIT_module DCONST_module
name name
o] o INIT DCONST
o] o] INIT_module DCONST_module

name name

o] o] CONST_module CINIT_module
name name

o] o] o] CONST CINIT

0 o] o] CONST_module CINIT_module
name name

o DIRDATA
o o DIRINIT DIRCONST
o] 10

As listed in Table 15.1-1 "fcc907 Memory Models" the fcc907 uses a compact or large model
when creating a program in which the data area for the entire system exceeds 64 Kbytes.

For a compact or large model, a code for accessing variables using 24-bit addressing is
generated. When multiple banks are used in the data area for accessing variables, there is no
problem even if a code for 24-bit addressing is generated. In the same way as described above
for the functions, accessing variables using 24-bit addressing can increase the size of the code
area. This applies for a system in which the data area exceeds one bank (64 Kbytes).

Even for a small or medium model in which variables are accessed using 16-bit addressing, a
variable qualified by the _ _far type qualifier can be accessed using 24-bit addressing. Section
18.2 "Using Calls for Variables Qualified by the _ _far Type Qualifier* describes how to define
and map variables that have been qualified by the _ _far type qualifier for small and medium
models.
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18.2 Using Calls For Variables Qualified by the _ _far Type
Qualifier

This section describes how to specify the _ _far type qualifier in a variable for small
and medium models where variables are accessed using 16-bit addressing.

It is recommended that the _ _far type qualifier be specified for variables not accessed
frequently or variables called from all functions.

m Specifying the _ _far Type Qualifier in a Variable for Small and Medium Models

When creating a system in which the data area exceeds 64 Kbytes, a code for 24-bit addressing
will be generated even when variables mapped in the bank pointed to by the DTB are accessed.
This applies when a compact or large model is used in which all variables are accessed using
24-bit addressing. Even for a small model in which variables mapped in the bank pointed to by
the DTB are accessed using 16-bit addressing, the _ _far type qualifier can be specified so that
the variables outside of the bank pointed to by the DTB can be accessed using 24-bit
addressing.

When creating a system in which the data area exceeds 64 Kbytes, it is recommended that the
__far type qualifier be specified for some of the variables at compilation for a small or medium
model.

m Specifying the _ _far Type Qualifier in Variables Depending on Access Frequency
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The access frequency of the variables in the entire system to be developed is not defined.
Some variables are accessed frequently while others are accessed infrequently. When creating
a system in which the data area exceeds 64 Kbytes, the variables frequently accessed are
mapped in the bank pointed to by the DTB as shown in Figure 18.2-1 "Variable Access
Relationship and Mapping Image 1". The _ _far type qualifier can be specified for a variable
that exceeds 64 Kbytes so that the variable is mapped outside the bank pointed to by the DTB.
As a result, code for 24-bit addressing is generated only when a variable qualified by the __far
type qualifier is accessed.



18.2 Using Calls For Variables Qualified by the _ _far Type Qualifier

Figure 18.2-1 Variable Access Relationship and Mapping Image 1

DTB

|

= A variable in the bank is
accessed using 16-bit

Bank h'ff
/F \ addressing.

int val_l ;
int val 2;

_ _far int gol 1;
_ _far int g01_2;

void main (void)

{

int temp;

==*> A variable outside the bank is
accessed using 24-bit
addressing.

The data that cannot be
accommodated in the bank h'00 is
mapped in the bank h'01.

Bank h'00 L~ @ = / 10;
) . /— Bank h'01 N
int val 1 . Variable qualified by the
Int val_ , '-..A _ _far type qualifier
/ _ _farint gol_1
int val_2 /
/ \_ _farint gol_2
[Tip]

Softune C Analyzer:

The Softune C Analyzer displays the functions that access the external variables in the
The access relationship of the displayed variables is helpful in
determining the variables to be qualified by the _ _far type qualifier.

analyzed program.
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18.3 Mapping Variables Qualified by the __far Type Qualifier

This section provides notes on mapping variables qualified by the _ _far type qualifier.
The output section name of a variable depends on the memory model specified at
compilation. A variable qualified by the _ _far type qualifier, however, is output to a
section called "XXXX_module name" regardless of the specified memory model.

m Memory Models and Output Sections of Variables Qualified by the _ _far Type Qualifier

The output section name of a variable is dependent on the memory model specified at
compilation. A variable qualified by the _ _far type qualifier, however, is always output to a
section called "XXXX_module name" regardless of the specified memory model. Sections
18.3.1 "Variables Qualified by the _ _far Type Qualifier for Small and Medium Models" and
18.3.2 "Variables Qualified by the _ _far Type Qualifier for Compact and Large Models" provide
notes on mapping variables qualified by the _ _far type qualifier for each memory model.
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18.3.1 Variables Qualified by the _ _far Type Qualifier for Small
and Medium Models

This section provides notes on mapping variables qualified by the _ _far type qualifier
for small and medium models in which variables are accessed using 16-bit addressing.
For small and medium models, a variable qualified by the _ _far type qualifier is output
to a section called "XXXX_module name."

m Code Sections of Small and Medium Models

Figure 18.3-1 "Linkage of Variables Qualified by the _ _far Type Qualifier for Small and Medium
Models" shows an image of linkage of variables qualified by the _far type qualifier for small
and medium models.

For small and medium models, the output section name as a result of compilation is different for
a variable for which a _ _far type qualifier is not specified than it is for a variable for which the _
_far type qualifier is specified.

For a variable for which a type qualifier is not specified, the variable is output to a DATA, INIT,
DCONST, or CONST section depending on the nature of the variable. Among these sections,
the variable areas (DATA and INIT) are allocated in the bank pointed to by the DTB. Normally,
these variable areas are allocated in the bank h'00. As a result, a variable output in the DATA
or INIT section is accessed using 16-bit addressing.

A variable qualified by the _ _far type qualifier is output to a section in which "_module name"
has been added to the section name. That is, a variable qualified by the _ _far type qualifier is
output to a section called "DATA_module name,” INIT_module name,” "DCONST_module
name," or "CONST_module name." These variables are accessed using 24-bit addressing. As
a result, a section called "XXXX_module name" can be allocated in an area outside of the bank
pointed to by the DTB.

211



CHAPTER 18 MAPPING PROGRAMS IN WHICH THE DATA AREA EXCEEDS 64 Kbytes

Figure 18.3-1 Linkage of Variables Qualified by the _ _far Type Qualifier for Small and Medium Models

a.obj
S e R Code section
S T T Compile .
a.Cl ... ) —»|Data section A variable qualified by the
ihe ardarel Assemble _ _far type qualifier is XXXX_a
. Data section of a output to a section called
. variable qualified | X XXX a "XXXX_module name."
by the _ _far -
type qualifier XXXX b
b.obj
- ::i :rn]: g% z igg Code section XXXX c
b c _ _far int B_datal; Compile -
_ _far int B_data2; ) Data section . N D .
ata section
int bl_data; Assemble Link ~
int b2 data; .
. Data t?lectlonl_?fg
variable qualifie
M by the _ _far Xxxx—b
type qualifier
. Code section
c.obj
- —fr e - 200) Code section
C.C | _ _far int c datal; Compile
_ _far int C_data2; Data section
int cl_data; Assemble
int c2_data; . .
Data section of a
. variable qualified | XXXX_C
° by the _ _far
type qualifier

m Example of Mapping Variables Qualified by the _ _far Type Qualifier (for a Small Model)

Figure 18.3-2 "Example of Mapping Variables Qualified by the _ _far Type Qualifier (for a Small
Model)" is an example of mapping variables qualified by the _ _far type qualifier compiled using
a small model.

Figure 18.3-2 Example of Mapping Variables Qualified by the _ _far Type Qualifier (for a Small Model)

@ -AL 0 h'/ff ffff <« PCB
@ -ro ROM_AREA=0xFF0000/0xFFFFFF ) INTVECT
@ -ra RAM AREA=0x000190/0x000CFF h'£f  ££54
@ -ra FAR_RAM=0x010000/0x01FFFF
@ -sc DATA/data/BYTE+INIT/data/BYTE+DIRDATA/dir/PAGE DIRCONST  }—
+DIRINIT/BYTE+STACK/stack/BYTE=RAM AREA
@ -sc *mm/data/BYTE=FAR_RAM CONST m
@ -sc CODE/code/BYTE+*/const/BYTE =
+*/dirconst/BYTE=ROM_AREA DCONST m
@ -rg 0 —
@ -m D:¥Softune¥*¥far *YLST¥far *.mpl DCONST M
@ -pl 60
@ -pw 132
@ -alin D:¥Softune¥*¥far *YLSTY CODE
@ -alout D:¥Softune¥*¥far *¥LST¥ h'£f 0000
@ -na
@ -Xals
@ -xalr ROM area
@ -w 1
@ -g RAM area
@ -cwno
@ -a STACK
@ -cpu MB90P678
@ -o D:¥Softune¥*Yfar *YABSYfar *1.abs DIRINIT e
DIRDATA
— DPR
INIT <
DATA
h’00 0190 .
Register bank
h’00 0180 INIT m

h’00 0000 I/O area DTB h’01 0000 DATAfm

A variable qualified by the _ _far type qualifier is output to a section called "XXXX_module
name."
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In this example, the h'ff bank is a ROM area. The following sections are allocated in the h'ff
bank:

CODE (code area)
DCONST (initial value area of a variable)

DCONST_m (initial value area of a variable qualified by the _ _far type qualifier for module
m)

CONST_m (variable area of a variable qualified by the _ _far type and const type qualifiers
for module m)

DIRCONST (initial value area of a variable qualified by the _ _direct type qualifier)

The h'00 bank and h’'01 banks are a RAM area. The following sections are allocated in the h’00
bank:

I0_REG (I/O register variable area)

DATA (variable area)

INIT (area of an initialized variable)

DIRDATA (area of a variable qualified by the _ _direct type qualifier)

DIRINIT (area of an initialized variable qualified by the _ _direct type qualifier)
STACK (user stack and system stack)

The sections of the following variables qualified by the _ _far type qualifier for module m are
allocated in the h’'01 bank:

DATA_m (variable area)

INIT_m (area of an initialized variable)

Refer to this example to allocate each section based on the system to be created
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18.3.2 Variables Qualified by the _ _far Type Qualifier for

Compact and Large Models

This section provides notes on mapping variables qualified by the _ _far type qualifier
for compact and large models in which variables are accessed using 24-bit

addressing.

For compact and large models, variables for which the __far type or _ _near type
gualifier has not been specified and variables qualified by the _ _far type qualifier are
output to sections called "XXXX_module name."

m Data Sections of Compact and Large Models

214

Figure 18.3-3 "Linkage of Variables Qualified by the _ far Type Qualifier for Compact and
Large Models" is an image of linkage of variables qualified by the _ far type qualifier for
compact and large models.

For compact and large models, a variable for which the __far type or _ _near type qualifier has
not been specified is output to a section called "XXXX_module name" as a result of compilation.
A variable qualified by the _ _far type qualifier is also output to a section called "XXXX_module
name" in the same way.

Therefore, a variable qualified by the __far type qualifier is output to the same section of the
same module as a variable for which the _ _far type qualifier has not been specified.

The variables output to these sections are accessed using 24-bit addressing. As a result, a
section called "XXXX_module name" can be allocated in RAM area other than the RAM area
pointed to by the DTB.
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Figure 18.3-3 Linkage of Variables Qualified by the _ _far Type Qualifier for Compact and Large Models

a.obj
_ _far int al = 100; X
~ Tfar int a2 = 200; Code section
far int A datal; .
T Tfar int A_data2; Compile
a.c PRy Assemble |Data section
. XXXX_a
L]
Data section
: XXXX
b.obj -
- Ear ine vz - 200, Code section
fe datal; i .
bcl- far int B dataz; Compile . > Data section e —
: ine bL_daca; Assemble | Data section Link XXXX_b
int b2 data;
. XXXX_b
L]
. Data section
c.obj XXXX_c
- ~far int 5 C Z00; Code section
C.C |- -fincium | Compie
it ol dare; Assemble | Data section
int c2 data;
- XXXX
. _C
L]

m Example of Mapping Variables Qualified by the _ _far Type Qualifier (for a Large Model)

Figure 18.3-4 "Example of Mapping Variables Qualified by the _ _far Type Qualifier (for a Large
Model)" is an example of mapping variable qualified by the _ _far type qualifier compiled using a
large model.

Figure 18.3-4 Example of Mapping Variables Qualified by the _ _far Type Qualifier (for a Large Model)

DCONST_space2 |—
@ -AL 0 h'ff ffff <«
@ -ro ROM3=0xFD0000/0xFDFFFF INTVECT PCB CONST_space2
@ -ro ROM2=0xFE0000/0xFEFFFF h'ff ££54
@ -ro ROM1=0xFF0000/0xFFFFFF
@ -ra spacel=0x000190/0x000CFF DIRCONST [ n’fe 0000 | CODE_space2
@ -ra space2=0x010000/0x01FFFF
@ -ra space3=0x020000/0x02FFFF DCONST_spacel
@ -ra space4=0x030000/0x03FFFF
@ -sc *spacel/data/BYTE+DIRDATA/Mir/PAGE CONST_spacel
+DIRINIT/dir/BYTE=spacel DCONST_space3 [
@ -sc *space2/data/BYTE=space2
@ -sc *space3/data/BYTE=space3 h’ff 0000 CODE_spacel CONST_space3
@ -sc STACK/BYTE=spaced
@ -sc *space3/code/BYTE+*space3/const/BYTE=ROM3
@ -sc *space2/code/BYTE+*space2/const/BYTE=ROM2 fd 0000 CODE_space3
@ -sc *spacel/code/BYTE+*spacel/const/BYTE
+*/dirconst/BYTE+*/code/BYTE+* /const/BYTE=ROML
@ -rg 0 ROM area
@ -m *:¥Softune¥*¥far *¥LST¥far *.mpl
e -pl 60 RAM area
@ -pw 132
@ -alin *:¥Softune¥*¥far *¥LSTY
@ -alout *:¥Softune¥*¥far *¥YLST¥ DIRINIT < STACK
g e B DIRDATA 105 oo
@ -Xals <DPR
@ -Xalr
@ -w 1 INIT_spacel INIT_space3 [«
€ -g —
@ -cwno DATA_spacel 702 0000 | DATA_space3
@ -a h’00 0190 —
@ -cpu MBI0678 , Register bank
@ -o *:¥Softune¥*¥far *¥ABS¥far *.abs h700 0180 INIT_space2 [«
oo o000 | MO@IER | o 01 o000 | DATA space2

A variable qualified by the _ far type qualifier is output to a section called "XXXX_module

name."
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In this example, the h'fd, h'fe, and h’'ff banks are ROM area. The following sections are
allocated in the h'fd bank:

CODE_space3 (code area of module space3)

CONST _space3 (variable area of a variable qualified by the const type qualifier of module
space3)

DCONST_space3 (initial value area of a variable of module space3)

The following sections are allocated in the h'fe bank

CODE_space? (code area of module space?)

CONST _space? (variable area of a variable qualified by the const type qualifier of module
space?)

DCONST_space? (initial value area of a variable of module space?2)

The following sections are allocated in the h'ff bank:

CODE_spacel (code area of module spacel)

CONST _spacel (variable area of a variable qualified by the const type qualifier of module
spacel)

DCONST_spacel (initial value area of a variable of module spacel)

DIRCONST (initial value area of a variable qualified by the _ _direct type qualifier)

In this example, the h’00, h’01, h’'02, and h’03 banks are RAM area. The following sections are
allocated in the h’00 bank:

IO_REG (/O register variable area)

DATA_spacel (variable area of module spacel)

INIT_spacel (area of an initialized variable of module spacel)

DIRDATA (variable area of a variable qualified by the _ _direct type qualifier)

DIRINIT (variable area of an initialized variable qualified by the _ _direct type qualifier)

The following sections are allocated in the h’'01 bank:

DATA_space?2 (variable area of module space?2)

INIT_space? (area of an initialized variable of module space?)

The following sections are allocated in the h'02 bank:

DATA_space3 (variable area of module space3)

INIT_space3 (area of an initialized variable of module space3)

The following section is allocated in the h'03 bank:

STACK (user stack and system stack)

Refer to this example to allocate each section based on the system to be created.
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18.4 Using Calls For Variables Qualified by the _ _near Type
Qualifier

This section describes how to specify the _ _near type qualifier in a variable for
compact and large models where variables are accessed using 24-bit addressing.
Specifying the _ _near type qualifier enables a variable mapped in the bank pointed to
by the DTB to be accessed using 16-bit addressing.

m Specifying the _ _near Type Qualifier in Variables for Compact and Large Models

A compact or large model in which all variables are accessed using 24-bit addressing is used
for systems in which large numbers of variables are accessed. That is, the data area exceeds
64 Kbytes. When a compact or large model is used, the variables are accessed using 24-bit
addressing.

This does not mean, however, that all of the variables are accessed with the same frequency.
Some variables are accessed very frequently while others are accessed infrequently. When 24-
bit addressing is used to access a variable that is accessed with high frequency, the code size
is increased and execution speed at access is reduced.

As shown in Figure 18.4-1 "Variable Access Relationship and Mapping Image 2" specifying the
___near type qualifier when compiling a variable that is frequently accessed will generate code
for accessing the variable using 16-bit addressing. The variable area of the variables qualified
by the _ _near type qualifier will then be set in the bank pointed to by the DTB.

As a result, a variable mapped in the bank pointed to by the DTB can be accessed using 16-bit
addressing. This also applies for compact and large models in which variables are accessed
using 24-bit addressing by default.
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Figure 18.4-1 Function Call Relationship and Mapping Image 2

=3 A variable in the bank pointed

Bank h'ff to by the DTB is accessed
using 16-bit addressing.

_ _near int val 1;

Variables that are ~ Tnear int val_2; ---3» A variable outside the bank
frequently accessed are pointed to by the DTB is
mapped in the bank int gol 1; accessed using 24-bit
pointed to by the DTB. int gol 2;
void main (void)
{
DTB int temp;
l = temp * 2;
Bank h'00 / 10

é f— Bank h'01 \

___hearint val_1 .., Variable qualified by the
/ o, | _ _fartype qualifier
A int gol_1
_ _nhearint val_2
int gol_2

o /

[Tip]
Softune C Analyzer:

The Softune C Analyzer displays the functions that access the external variables in the
analyzed program. The access relationship of the displayed variables is helpful in
determining the variables to be qualified by the _ _near type qualifier.
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18.5 Mapping Variables Qualified by the _ _near Type Qualifier

This section provides notes on mapping variables qualified by the _ _near type
qualifier for compact and large models in which variables are accessed using 24-bit

addressing.

A variable qualified by the _ _near type qualifier is output to the DATA, INIT, or
DCONST section regardless of the specified memory model.

m  Memory Models and Output Sections of Variables Qualified by the _ _near Type Qualifier

The output section name of a variable is dependent on the memory model specified at
compilation. A variable qualified by the _ _near type qualifier, however, is output to the DATA,
INIT, or DCONST section regardless of the specified memory model.

Figure 18.5-1 "Linkage of Variables Qualified by the _ near Type Qualifier for Compact and
Large Models" shows an image of linkage of variables qualified by the _ _near type qualifier for
compact and large models.

When the variable qualified by the _ _near type qualifier defined in module A, the variable
qualified by the _ _near type qualifier defined in module B, and the variable qualified by the _
_hear type qualifier defined in module C are linked, the variables are combined into one section
regardless of the defined module. As a result, variables qualified by the _ _near type qualifier
can be mapped in the same bank even if the variables are in different modules. However, these
sections cannot be divided and mapped. To divide the sections of variables qualified by the _
_hear type qualifier into a section different for each module, the output section name must be
changed.
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Figure 18.5-1 Linkage of Variables Qualified by the _ _near Type Qualifier for Compact and Large

Models
a.obj
_ _near int al=100; .
near int a2=200; Code section
_ “near int A_datal;
_ _near int A_data2; Compile Data section
void func_A(void)
a.c - XXXX_a
{ ' 5
M Assemble Data section of a DER SEEion
e variable qualified XXXX_a
by the _ near
) type qualifier

b.obj

_ _near int b1=100;
~ Tnear int b2=200; Code section -

“near int B_datal;
Tnear int B data2;

b - Compile
d func_B(void) I i
.C | yoid fune Bed Link Code section
. Assemble
L) Data liectionl_?fg
b et DATA
} type qualifier
c.obj INIT
_ _near int c1=100;
near int c2=200;
~ Tnear int C_datal; Code section
~ Tnear int C_data2; ) DCONST
C.C void func_C(void) Compile
{
M Assemble A variable qualified by the _ _near type qualifier is
M Data section of a output to the DATA, INIT, or DCONST section. At
) panable qualied linkage, the sections are combined into one section

type qualifier having the same name.
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m Example of Mapping Variables Qualified by the _ _near Type Qualifier (for a Compact Model)

For compact and large models, variables are accessed using 24-bit addressing. Variables
qualified by the _ _near type qualifier, however, are accessed using 16-bit addressing on the
premise that the variables are mapped in the bank pointed to by the DTB.

The DATA and INIT sections must be allocated in the h’00 bank pointed to by the DTB.

Figure 18.5-2 Example of Mapping Variables Qualified by the _ _near Type Qualifier (for a Compact

Model)
PCB
h'ff ffff INTVECT
h'ff  ££54
DCONST_space3

@ -AL 0
@ -ro ROM_AREA=0XFF0000/0xFFFFFF DCONST. space2
@ -ra RAM_sapcel=0x000190/0x000CFF DCONST_spacel

@ -ra RAM space2=0x010

DCONST

CONST_space3

+DIRINIT/dir/BYTE+

acel/data/BYTE=RAM sapcel
. £ CONST _space2

@ -sc *_space2/data/BYTE pace2

@ -sc *_space3/data/BYTE spac

@ -sc STACK/stack/BYTE=RAM spaced CONSIRspaceT

@ -sc CODE/code/BYTE+DIRCONST/dirconst/BYTE DIRCONST

ST*/const/BYTE+DCONST* /const/BYTE h’ff 0000
“onst/BYTE=ROM_AREA

@ -rg 0

@ -m D:¥Softune¥*¥near *¥LST¥near_ *.mpl CODE

@ -pl 60

@ -pw 132 ROM area

@ -alin D:¥Softune¥*¥near *¥LST¥ [ =eeeeeeeesseesesscssessessssssssesseeseessees B I b

@ -alout D:¥Softune¥*¥near *¥LSTY RAM area

@ -na

@ -Xals INIT_spacel

@ -Xalr

e -w 1 DATA_spacel

€ -g STACK

@ -cwno h’03 0000

o a DIRINIT < |\ .

@ -cpu MB90P678 DIRDATA

@ -o D:¥Softune¥*near *¥ABS¥near_*.abs < DPR INIT_space3 |e—

INIT w02 0000 | DATA_space3

h’00 0190 DATA | e 1
woo o1so| Register bank INIT_space2 (€

n 01 oooo | DATA_space2
Jo0 o 1/0 area
h’00 0000 «DTB

In this example, the h'ff bank is ROM area. The following sections are allocated in the h'ff bank:
e CODE (code area)

« DIRCONST (initial value area of a variable qualified by the _ _direct type qualifier)

« CONST_spacel (area of a variable qualified by the const type qualifier for module spacel)

« CONST_space2 (area of a variable qualified by the const type qualifier for module space?2)

« CONST_space3 (area of a variable qualified by the const type qualifier for module space3)

« DCONST (initial value area of a variable qualified by the _ _near type qualifier)

« DCONST _spacel (initial value area of a variable of module spacel)

« DCONST_space? (initial value area of a variable of module space2)

« DCONST_space3 (initial value area of a variable of module space3)

In this example, the h'00, h’'01, h’'02, and h’03 banks are RAM area. The following sections are
allocated in the h’00 bank:

« |O_REG (l/O register variable area)
« DATA (variable area of a variable qualified by the _ _near type qualifier)
< INIT (variable area of an initialized variable qualified by the _ _near type qualifier)

« DIRDATA (variable area of a variable qualified by the _ _direct type qualifier)
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» DIRINIT (variable area of an initialized variable qualified by the _ _direct type qualifier)
» DATA spacel (variable area of module spacel)

» INIT_spacel (variable area of an initialized variable of module spacel)
The following sections are allocated in the h’'01 bank:

» DATA space?2 (variable area of module space?)

* INIT_space?2 (variable area of an initialized variable of module space?2)
The following section is allocated in the h'02 bank:

» DATA_ space3 (variable area of module space3)

* INIT_space3 (variable area of an initialized variable of module space3)
The following section is allocated in the h'03 bank:

» STACK (user stack and system stack)

Refer to this example to allocate a section based on the system to be created.
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INDEX

The index follows on the next page.
This is listed in alphabetic order.
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