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PREFACE

■ Objectives and Intended Reader

The F2MC-16L/16LX/16/16H/16F (hereafter collectively referred to as the F2MC-16 Family) are
16-bit microcontrollers designed for embedded systems.

This manual provides information required for using the fcc907 F2MC-16 family C compiler to
create an embedded system.  The manual explains how to create C programs that effectively

use the F2MC-16 family architecture and provides notes related to the creation of C programs.

This manual is intended for engineers who use the fcc907 to develop application programs for

the F2MC-16 family.  Be sure to read this manual completely.

■ Trademarks

Softune is a registered trademark of Fujitsu Limited.

Other system names and product names in this manual are trademarks of their respective
companies or organizations.  The symbols ™ and ® are sometimes omitted in the text.

■ Structure of This Manual

This manual consists of the three parts listed below.

PART I "VARIABLE DEFINITIONS AND VARIABLE AREAS"

Part I describes the variable definitions and variable areas for creating C programs.

CHAPTER 1 "OBJECTS MAPPED INTO MEMORY AREAS"

This chapter briefly describes the memory mapping for a systems in which an F2MC-16
family  microcontroller was embedded.

CHAPTER 2 "VARIABLE DEFINITIONS AND VARIABLE AREAS"

This chapter describes the variable definitions and variable areas to which the results of
compilation are output.  It also describes the variable areas for variables that are initialized at
definition and the variable area for those that are not.  In addition, the chapter describes
variables declared as "static."

CHAPTER 3 "READ-ONLY VARIABLES AND THEIR VARIABLE AREA"

This chapter describes how to use variables declared with the type-qualifier "const" that are
only read at execution time and provides notes on their use.  This chapter also discusses the
reduction of the variable area and object efficiency for referencing when the "const" type
modifier is used.

CHAPTER 4 "USING AUTOMATIC VARIABLES TO REDUCE THE VARIABLE AREA"

This chapter explains how to reduce the variable area by using automatic variables.  Area is
allocated to automatic variables at execution time.

CHAPTER 5 "ACCESSING VARIABLES THAT USE BIT FIELDS"

This chapter describes how to access variables that use bit fields.
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PART II "USING STACK AREA EFFICIENTLY"

Part II describes how to use the stack area efficiently.

CHAPTER 6 "FUNCTION CALLS AND THE STACK"

This chapter briefly describes the stack area used when a function is called.

CHAPTER 7 "REDUCING FUNCTION CALLS BY EXPANDING FUNCTIONS IN LINE"

This chapter describes how to reduce the stack area by using inline expansion of functions in
function calls.

CHAPTER 8 "REDUCING THE ARGUMENTS TO CONSERVE STACK AREA"

This chapter describes how to reduce the number of arguments in function calls so that less
stack area is required.

CHAPTER 9 "CONSERVING STACK AREA BY IMPROVEMENTS ON THE AREA FOR
FUNCTION RETURN VALUES"

This chapter explains the function return values for the register and the stack.  Reducing the
return values for the stack can reduce the used stack area.

PART III "USING LANGUAGE EXTENSIONS"

Part III describes the language extensions specific to the fcc907.  Part III also discusses
items in the extended language specifications that require special attention.

CHAPTER 10 "WHAT ARE LANGUAGE EXTENSIONS?"

This chapter describes the fcc907-specific extended language specifications, such as the
qualifier for extensions, _ _asm statement, and "#pragma."

CHAPTER 11 "NOTES ON ASSEMBLER PROGRAMS IN C PROGRAMS"

This chapter provides notes on including assembler code with the _ _asm statements and
#pragma asm/endasm of the extended language specifications.

CHAPTER 12 "NOTES ON DEFINING AND ACCESSING THE I/O AREA"

This chapter provides notes on specifying and mapping when using the _ _io type qualifier.

CHAPTER 13 "MAPPING VARIABLES QUALIFIED WITH THE _ _direct TYPE QUALIFIER"

This chapter provides notes on specifying and allocating variables declared with the _ _direct
type qualifier.

CHAPTER 14 "CREATING AND REGISTERING INTERRUPT FUNCTIONS"

This chapter provides notes on using language extensions of the fcc907 to enable interrupt
processing.

PART IV "MAPPING OBJECTS EFFECTIVELY" 

This part explains how to map objects effectively. 

CHAPTER 15 "MEMORY MODELS AND OBJECT EFFICIENCY" 

This chapter describes the memory models of the fcc907 and explains object efficiency.

CHAPTER 16 "MAPPING VARIABLES QUALIFIED WITH THE TYPE QUALIFIER CONST" 

This chapter provides notes on mapping variables declared with the type qualifier const. 

CHAPTER 17 "MAPPING PROGRAMS IN WHICH THE CODE AREA EXCEEDS 64 Kbytes"

This chapter describes how to map programs when the code area exceeds 64 Kbytes. 

CHAPTER 18 "MAPPING PROGRAMS IN WHICH THE DATA AREA EXCEEDS 64 Kbytes" 

This chapter describes how to map programs when the data area exceeds 64 Kbytes. 
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In this manual, the designation <Notes> indicates items requiring special attention.

The sections entitled "Tip" provide information on functions that is useful for creating programs.

The Softune C Checker analyzes C source programs and outputs a warning for items requiring
attention to ensure that the fcc907 does not output an error message.

The Softune C Analyzer analyzes function calls within the C source code of the program and
displays information about such items as variables, relationship between function references,
and the used amount of stack areas.
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PART I VARIABLE DEFINITIONS AND VARIABLE 
AREAS

This part describes the variable definitions and variable areas for creating C programs.
This part first briefly describes memory mapping and the variables used for creating 

an F2MC-16 family microcontroller embedded system.  It then briefly describes the 
relationship between the variable definitions and variable areas.  It concludes by 
describing how to efficiently create C programs.

CHAPTER 1  "OBJECTS MAPPED INTO MEMORY AREAS"

CHAPTER 2  "VARIABLE DEFINITIONS AND VARIABLE AREAS"

CHAPTER 3  "READ-ONLY VARIABLES AND THEIR VARIABLE AREA"

CHAPTER 4  "USING AUTOMATIC VARIABLES TO REDUCE THE VARIABLE 
AREA"

CHAPTER 5  "ACCESSING VARIABLES THAT USE BIT FIELDS"
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CHAPTER 1 OBJECTS MAPPED INTO MEMORY 
AREAS

This chapter briefly describes objects that are mapped into memory areas before 
taking up the subject of the variable.

1.1  "Program Components"

1.2  "Mapping into Memory Areas"

1.3  "Dynamically Allocated Variables"

1.4  "Statically Allocated Variables"
3



CHAPTER 1  OBJECTS MAPPED INTO MEMORY AREAS
1.1 Program Components

This section briefly describes the program components.
Programs can be roughly divided into code and data.

■ Program Components

Programs created in C (C programs hereafter) and programs created in Assembler (assembler
programs hereafter) can both be roughly divided into code and data sections.

❍ Code

This section in the program contains the machine instructions to be executed by the CPU.

The algorithm, which is coded as functions in a C program, is compiled and converted to
machine instruction code.

The term "Code" refers to a set of execution instructions that are only read at execution.

❍ Data

The data is accessed by the program.

In a C program, the data includes variables, character strings, literal constants, and initial
values.

Data can be read and written depending on the processing.

A C program can be classified as shown in Figure 1.1-1 "Classification of Objects in Programs
for Embedded Systems and Allocation of Objects in the Memory Area".  Variables, which are
data items, can be classified into three types:  Variables that are allocated dynamically,
variables that are allocated statically, and variables that are allocated to the I/O area.

Dynamically allocated variables are allocated in a stack.  Statically allocated variables can be
classified into variables that are initialized and variables that are not.  Initialized variables can be
allocated both in the initial value area and the variable area.

Program
Code (machine instruction):  Read only

Data:  Read and write
4



1.1  Program Components
Figure 1.1-1  Classification of Objects in Programs for Embedded Systems and Allocation of Objects in 
the Memory Area

Program

Code (function)

Data (variable)

Dynamically
allocated
variables
Statically
allocated
variables

Allocated to the I/O area

Without
initial
value

With
initial
value

ROM area
Initial value area

RAM area

Variable area

I/O area
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CHAPTER 1  OBJECTS MAPPED INTO MEMORY AREAS

  An 
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1.2 Mapping into Memory Areas

This section briefly describes the types of memory areas and the objects that are 
mapped into them.

In embedded systems that use an F 2MC-16 family microcontroller, the memory area 
can be mainly classified into ROM, RAM, and I/O area.

■ Mapping into Memory Areas

An embedded system that uses an F2MC-16 family microcontroller uses three types of memory
areas: ROM area, RAM area, and I/O area.

❍ Read only memory (ROM) area

Objects mapped into the ROM area can only be read.

The code and initial value areas are allocated in the ROM area.

❍ Random access memory (RAM) area

Objects mapped into the RAM area can be read and written.

The data areas that are read and written to during program execution are allocated in the RAM
area.

Stacks are also allocated in the RAM area.

❍ Input/output (I/O) area

I/O objects are mapped into the I/O area.

As shown in Figure 1.2-1 "Objects Generated by the C Compiler and Mapping into Memory
Areas", code and the initial values of variables that can only be read at execution time are
mapped into the ROM area.  Variables that are read and written at execution time are mapped
into the RAM area.

<Notes>

Since the values in the RAM area are undefined at system start, variables that are mapped
into the RAM area must be initialized as described below before program execution:

• Variable areas that are not initialized must be initialized to 0.

• The variables in the RAM area must be initialized using the initial values in the ROM area.

This initialization operation are performed using an initialization program called a startup

routine1.

The objects are mapped into their memory area during linking.

1. The startup routine is a program that performs initialization before executing the C program.
example for this is the program startup.asm supplied as a sample with the C compiler.  
Refer to the C compiler manual for information about the operations performed by the startu
tine.
6



1.2  Mapping into Memory Areas
Figure 1.2-1  Objects Generated by the C Compiler and Mapping into Memory Areas
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CHAPTER 1  OBJECTS MAPPED INTO MEMORY AREAS
1.3 Dynamically Allocated Variables

This section briefly describes the dynamically allocated variables.
In a C program, the automatic variables that are defined in functions and the register 
variables are allocated dynamically.

■ Dynamically allocated variables

In a C program, the dynamically allocated variables are the automatic variables and the register
variables defined in functions.

❍ Automatic variables

• One type of local variables

• Defined in functions

• Able to be accessed only in the function in which they were defined

• Allocated in a stack

❍ Register variables

• One type of local variable

• Defined in a function

• Able to be accessed only in the function in which they were defined

• Allocated in registers

As shown in Figure 1.3-1 "Dynamically Allocated Variables", the stack area is allocated for
automatic variables when a function is called.  This area is deallocated when the function
terminates.  Automatic variables can be accessed only in the function that defined them.

During a function call, a register variable receives priority allocation to a hardware register.  The
register is released when the function terminates.  As with automatic variables, register
variables can be accessed only in the function in which they are defined.
8



1.3  Dynamically Allocated Variables
Figure 1.3-1  Dynamically Allocated Variables
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CHAPTER 1  OBJECTS MAPPED INTO MEMORY AREAS
1.4 Statically Allocated Variables

This section briefly describes the statically allocated variables.
In a C program, external variables that are defined outside a function and variables 
declared as "static" are both allocated statically in a fixed RAM area.

■ Statically Allocated Variables

In a C program, external variables that are defined outside a function and variables declared as
"static" are both allocated statically.

❍ External variables

• Defined outside a function

• Able to be accessed from the entire module

• Statically allocated in memory

❍ Static variables

• Able to be accessed only within their defined scope

• Statically allocated in memory

As shown in Figure 1.4-1 "Statically Allocated Variables", external variables and static variables
are allocated in a fixed RAM area at program execution.  External variables can be accessed by
all functions.  Static variables are valid only within their defined scope.  For details of static
variables, see Section 2.4 "Variables Declared as "static" and Their Variable Area".
10



1.4  Statically Allocated Variables
Figure 1.4-1  Statically Allocated Variables

Statically allocated variables
External variables 
Static variables 

Allocated in the RAM area
The variables exist in the RAM area

External variable
definitions

Variable area in RAM
The values can be read and
written by all functions.

Area for
external
variables

Area of static local
variable defined in
function initsem( )

Definition
of "static"
local 
variable

semno

cont

currpid
nextproc
semcont
currsem
nextsem

int currpid;

int nextproc;

int semcont;

int currsem;

int nextsem;

int semno = 10;

extern void initproc(void);

extern int initsem(int);

extern int wait(int);

void main(void)

{

int userpid = 10;

int a;

initproc( );

a = initsem(userpid);

}

void initproc(void)

{

int flag;

currpid = 0;

nextproc = 1;

}

int initsem(int num)

{

static int cont;

currsem = semno - num;

cont--;

return( cont );

}
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CHAPTER 1  OBJECTS MAPPED INTO MEMORY AREAS
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CHAPTER 2 VARIABLE DEFINITIONS AND VARIABLE 
AREAS 

This chapter briefly describes the variable definitions and variable areas to which 
variables are output as a result of compilation.  It then describes the relationship 
between initial values and the variable areas used for variables.  The chapter also 
describes variables declared as "static," which is one type of static variables that have 
a special format.

2.1  "External Variables and their Variable Area"

2.2  "Initial Values and Variable Area for External Variables"

2.3  "Initialized Variables and Initialization at Execution"

2.4  "Variables Declared as "static" and their Variable Area"
13



CHAPTER 2  VARIABLE DEFINITIONS AND VARIABLE AREAS
2.1 External Variables and Their Variable Area

This section briefly describes the external variables and the variable areas.
The external variables are defined outside a function.  The area for external variables 
is fixedly allocated in RAM.

■ External Variables

As shown in Figure 2.1-1 "Definitions of External Variables", the external variables, which are
defined outside a function, are statically allocated.  They are allocated in the memory area and
can be accessed from the entire module.

Figure 2.1-1  Definitions of External Variables

The name of the section to which a variable is output as a result of compilation depends on the
storage class, type qualifier, and whether an initial value is specified at definition.  For details,
see the fcc907 manual. Table 2.1-1 "Variables and Data Section to Which a Variable Is Output
(for Small and Medium Models)" and Table 2.1-2 "Variables and Data Section to Which a
Variable Is Output (for Large and Compact Models)" list the relationship between the external
variable definitions and the section to which a variable is output as a result of compilation.

Definitions of external
variables

Fixed variable area in RAM
Values can be read and written by all
functions.

Area for
external
variables
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2.1  External Variables and Their Variable Area
[Tip]

Softune C Checker:

The Softune C Checker outputs a warning for variables in an analyzed module that are not
accessed at all during external access.  Accordingly, define external variables only after

Table 2.1-1  Variables and Data Section to Which a Variable Is Output (for Small and Medium Models) 

Type qualifier
Specification 
of Initial value

Variable area Initial value area

_ _io _ _direct const _ _near _ _for Section 
type

Section 
name

Section type Section 
name

DATA DATA

o DATA INIT CONST DCONST

o o CONST CONST DATA CINIT

o DIR DIRDATA

o o DIR DIRINIT DIRCONST DIRCONST

o IO IO

o DATA DATA

o o DATA DINIT CONST DCONST

o o o CONST CONST DATA CINIT

o DATA DATA_*

o o DATA DINIT_* CONST DCONST_*

o o CONST CONST_* DATA CINIT_*

Table 2.1-2  Variables and Data Section to Which a Variable Is Output (for Large and Compact Models)

Type qualifier
Specification 
of Initial value

Variable area Initial value area

_ _io _ _direct const _ _near _ _for Section 
type

Section 
name

Section type Section 
name

DATA DATA_*

o DATA INIT_* CONST DCONST_*

o o CONST CONST_* DATA CINIT_*

o DIR DIRDATA

o o DIR DIRINIT DIRCONST DIRCONST

o IO IO

o DATA DATA

o o DATA DINIT CONST DCONST

o o o CONST CONST DATA CINIT

o DATA DATA_*

o o DATA DINIT_* CONST DCONST_*

o o CONST CONST_* DATA CINIT_*
15



CHAPTER 2  VARIABLE DEFINITIONS AND VARIABLE AREAS
verifying the intended scope.  Meaningless access declarations make a program look poorly
written.
16



2.2  Initial Values and Variable Area for External Variables
2.2 Initial Values and Variable Area for External Variables

This section describes the relationship between the initial values and variable areas of 
external variables.
In fcc907, when an initial value is specified at definition of an external variable, 
variable area is allocated in both the ROM and RAM areas.

■ Initial Values and the Variable Area for External Variables

Variables can be classified into the following three types according to how initialization is
handled when the variables are defined.  Whether an initial value is required depends on the
way in which the variable is to be used.

Initial value not required

No initial value specification (The variable does not need to be initialized to 0.)

Initial value 0

No initial value specification (The variable must be initialized to 0.)

Initial value other than 0

An initial value other than 0 is specified

The fcc907, handles two types of external variables: external variables for which an initialization
value is specified when they are defined (initialized variables hereafter) and external variables
for which no initialization value is specified when they are defined (uninitialized variables
hereafter). 

The variable area and initial value area sections are output for initialized variables.  For
uninitialized variables, the section variable area are output. 

Figure 2.2-1 "Variable Areas and Memory Mapping" shows the relationship between the output
sections and memory mapping for initialized and uninitialized variables.  For initialized variables,
a variable area is allocated in both ROM and RAM.  The RAM area values are undefined at
system start.  After system start, the startup routine transfers the initial values from ROM to the
RAM variable area.  This operation completes initialization of the variable.

For uninitialized variables, a variable area is allocated only in RAM.  The value of this RAM area
is also undefined at system start.  After system start, the startup routine initializes all values in
the variable area for uninitialized variables to 0.

<Notes>

Although the startup routine provided as a sample initializes all uninitialized variables to 0,
perform initialization based on the program system that is to be created.
17
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Figure 2.2-1  Variable Areas and Memory Mapping

Uninitialized variable Initialized variable

Link

ROM area The initial value area is allocated in the
ROM area, and the area accessed at
execution is allocated in the RAM area.
For an initialized variable, an area of twice
the size of the defined variable is required
in the ROM and RAM areas.

RAM area
For an uninitialized variable, a variable
area is allocated only in RAM.
The startup routine initializes all values in
this area to 0.

The startup routine transfers the initial
values in the ROM area to the variable
area in RAM.

INIT

DATA

DATA INIT DCONST

DCONST
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2.3 Initialized Variables and Initialization at Execution

This section describes initialized variables and the initialization of uninitialized 
variables at program execution.

■ Initialized Variables and Initialization at Execution

As shown in Figure 2.2-1 "Variable Areas and Memory Mapping", initialized variables require an
initial value area and a variable area, which means that the totally required area is twice that of
defined variables.  For uninitialized variables, only a variable area needs to be allocated.
Because the initialization value is only accessed the first time, a method is also provided that
allows to initialize the variable when the respective function is executed, making it unnecessary
to specify an initial value at definition time.

Figure 2.3-1 "Initialized Variables and Initial Value Assignment at Function Execution" shows an
example of a function in a variable is initialized beforehand, and an example of a function in
which the value is set at the beginning of the function.

See function list1( ) in (1), "Definition as an initialized variable," in Figure 2.3-1 "Initialized
Variables and Initial Value Assignment at Function Execution".  Function list1( ) allocates a 2-
byte area in the variable area, INIT section, and initial value area DCONST section for variable
i_data for which an initial value specified.  The INIT section is allocated in RAM and the
DCONST section is allocated in ROM.  The startup routine transfers the initial value from ROM
to the variable area in RAM.

See function list2( ) in (2), "Assigning a value when the variable is used," in Figure 2.3-1
"Initialized Variables and Initial Value Assignment at Function Execution".  Function list2( )
allocates only a 2-byte variable area DATA for the variable i_data in RAM.  However, a code for
assigning a value to the variable is required.  Compared with (1), the area for the value is
smaller by 2 bytes, but the code area is bigger by 6 bytes.

The startup routine is used to transfer the initial value of the variable to the variable area in
RAM.  To assign an initial value in the function, a 6-byte code is required whenever a 2-byte
variable is assigned.

If we take the case of a variable that is initialized using 10 different values, code of (6 bytes x
10) = 60 bytes is required.  When a variable is defined as an initialized variable, the value area
in the ROM will increase by 20 bytes.  Because the startup routine handles transfer, it is
assumed that the size of the code will not increase.  Thus, when the increase of 60 bytes in
code is conmpared with the increase of 20 bytes in the variable area, it can be said that use of
the ROM area is more economically when an initialized variable is defined.

<Notes>

Setting an initial value for a variable that does need not to be initialized wastes ROM area.
Setting an initial value of 0 at definition time and using the startup routine to initialize
uninitialized variables to 0 wastes initial value area.  Set the initial value of an external
variable only after carefully checking whether initialization is necessary.
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Figure 2.3-1  Initialized Variables and Initial Value Assignment at Function Execution

(1)  Definition as initialized variable (2)  Assigning a value when the variable
is used

The size of the object to be generated differs.

The initial value area DCONST and variable 
area INIT are output.

The variable area DATA is output.
Because code is generated for assigning the
value in the function, the size of the code area
increases.

_
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2.4  Variables Declared as "static" and Their Variable Area
2.4 Variables Declared as "static" and Their Variable Area

This section briefly describes variables declared as "static" and the variable area they 
require.  Variables declared as "static" are only one type of variables that are allocated 
statically.
For a variable declared as "static", area in RAM is allocated for the variable statically.  
The scope of variables declared as "static" depends on where they are defined.  A 
variable that is defined outside a function is referred to as a static global variable.  A 
variable that is defined inside a function is referred to as a static local variable.  Even if 
the module or function where the variables are defined terminates, the values are 
retained in the variable area within RAM.

■ Variables Declared as "static" and Their Variable Area

Whether a variable is dynamically or statically allocated depends on where it is defined.  Area
for external variables is allocated in RAM if the variable has been defined outside a function.
Because the area is always present in RAM, the area can be accessed from the entire module.

For a variable declared as "static", area in RAM is allocated for the variable statically.  However,
as shown in Figure 2.4-1 "Scope of Variables Declared as "static"", the scope of the variable
depends on where it is defined.  A variable that is defined outside a function is referred to as a
static global variable.  A variable that is defined within a function is referred to as a static local
variable.  Static global and static local variables are output to the same section for external
variables.
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Figure 2.4-1  Scope of Variables Declared as "static"

Section 2.4.1 "Example of Function with Static Global Variable" provides an example of a
function that uses a static global variable.  Section 2.4.2 "Example of a Function with a Static
Local Variable" provides an example of a function that uses a static local variable.

The scope of a variable declared as "static" depends on where the variable is defined.  Even if
the module or function where the variable is defined terminates, the value is retained in the
variable area in RAM.

The advantage of using a variable defined as a static local variable in a function as a counter
variable for the number of times the function is called is that the value will be retained.  On the
other hand, if a variable declared as "static" is used for a task where the value need not be
retained, RAM area will be used inefficiently.  Define a static variable only after carefully
investigating whether this is necessary.

[Tip]

Softune C Checker:

The Softune C Checker outputs a warning for variables that have been declared as "static" in
the analyzed module, but have not been accessed at all.  Accordingly, carefully check the
scope of variables and define variables as static variables only when necessary.

In addition, for Variables declared as "static" for which no initial value has been specified, a
warning requesting that the variables be initialized will be output.  If necessary, specify an
initial value.

Can only be accessed from within
the module in this source file. 
Cannot be accessed from other
modules. 
Area is allocated in RAM.

Valid inside this function.
Area is allocated in RAM.

Different variables
Different areas are allocated for these variables.

extern int main(void);

extern int inittime(void);

extern int init(int);

extern int numproc;

int currpid;

int semno;

int nextsem = 0;

static int nextproc = 100;

int null(void)

{

int userpid = 10;

inittime();

currpid = init(userpid);

nextsem++;

semno = 100;

return(semno);

}

int init(int pid)

{

static int num = 50;

int i = 0;

int j;

return(num--);

}

extern int null(void);

extern int currpid;

extern int semno;

extern int nextsem;

int numproc = 100;

static int nextproc = 50;

void start(void)

{

int pid = 0;

if (null() > 0)

pid++;

}

Static global variable

Static global variable

Static local variable
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2.4.1 Example of Function with Static Global Variable

Figure 2.4-2 "Example of a Function that has a Static Global Variable" shows an 
example of a function that has a static global variable.  The variable count, which is 
declared as "static" outside the function, is a static global variable.

■ Example of a Function with Static Global Variable

Area for the static global variable count is allocated via the variable LI_1, which is not declared
as PUBLIC.  RAM area is therefore allocated for the variable count and the value retained.
Note, however, that this variable cannot be accessed from other compile units.

Figure 2.4-2  Example of a Function with Static Global Variable

Static global variable

Area for the static global variable count is allocated via the
variable LI_1, which is not declared as PUBLIC.  As a result,
the variable cannot be accessed from other compile units.

Area for the global variable time is allocated as an area 
declared as PUBLIC.

1 int time;

2 static int count = 0;

3

4 int timeint(void);

5

6 int list3(void)

7 {

8 int flag = 0;
9

10 if (++count >= 60)

11 flag = timeint();

12 return(flag);

13 }

14

15 int timeint(void)

16 {

17 int temp;

18

19 if(!--time){

20 time = 10;

21 count -= 60;

22 }

23 temp = time * count;

24 return(temp);

25 }

;;;; if (++count >= 60)
MOVW A, LI_1
MOVN A, #1
ADDW A
MOVW RW0, A
MOVW A, RW0
MOVW LI_1, A
MOVW A, RW0
CMPW A, #60
BLT L_23

;;;; count -= 60;

MOVW A, #60

SUBW LI_1, A

;;;; temp = time * count;

MOVW A, _time

MULUW A, LI_1
MOVW @RW3+-2, A

.SECTION DATA, DATA, ALIGN=2

.ALIGN 2

.GLOBAL _time
_time:

.RES.B 2

.SECTION INIT, DATA, ALIGN=2

.ALIGN 2
LI_1:

.RES.H 1

NO SECTION-NAME SIZE ATTRIBUTES

0 DCONST . . . . . . . 000002 CONST REL ALIGN=2
1 DATA . . . . . . . . 000002 DATA REL ALIGN=2
2 INIT . . . . . . . . 000002 DATA REL ALIGN=2
3 CODE . . . . . . . . 00004D CODE REL ALIGN=1
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2.4.2 Example of aunction with Static Local Variable

Figure 2.4-3 "Example of a Function with Static Local Variable" shows an example of a 
function that has a static local variable.  The variable count, which is declared as 
"static" in the function, is a static local variable.

■ Example of a Function with Static Local Variable

Area for the static local variable count defined in function list4( ) is allocated via the variable
LI_1, which is not declared as PUBLIC.

Similarly, area for the static local variable count defined in function timeint( ) is allocated via the
variable LI_2, which also is not declared as PUBLIC.  A separate area in RAM is allocated for
each of the static local variables "count" and their values are retained.  The scope of these
variables is within the defined function. The variables cannot be accessed from other functions
even within the same compilation unit.

Figure 2.4-3  Example of a Function with Static Local Variable

Static local variable

Static local variable

Area for the static local variable count of function list4( ) is 
allocated via the variable LI_1, which is not declared as PUBLIC.
Area for the static local variable count of function timeint2( ) is 
allocated via the variable LI_2, which is not declared as PUBLIC.

1 int time;

2

3 int timeint2(void);

4

5 int list4(void)

6 {

7 int flag = 0;

8 static int count = 0;
9

10 if (++count >= 60)

11 flag = timeint2();

12 return(flag);

13 }

14
15 int timeint2(void)

16 {

17 int temp;

18 static int count = 1000;
19

20 if(!--time){

21 time = 10;

22 count -= 60;

23 }

24 temp = time * count;

25 return(temp);

26 }

;;; if (++count >= 60)
MOVW A, LI_1
MOVN A, #1
ADDW A
MOVW RW0, A
MOVW A, RW0
MOVW LI_1, A
MOVW A, RW0
CMPW A, #60
BLT L_23

;;;; count -= 60;

MOVW A, #60

SUBW LI_2, A

;;;; temp = time * count;

MOVW A, _time

MULUW A, LI_2

MOVW @RW3+-2, A

.SECTION DATA, DATA, ALIGN=2

.ALIGN 2

.GLOBAL _time
_time:

.RES.B 2

.SECTION INIT, DATA, ALIGN=2

.ALIGN 2
LI_2:

.RES.H 1

.ALIGN 2
LI_1:

.RES.H 1

NO SECTION-NAME SIZE ATTRIBUTES

0 DCONST . . . . . . 000004 CONST REL ALIGN=2

1 DATA . . . . . . . 000002 DATA REL ALIGN=2

2 INIT . . . . . . . 000004 DATA REL ALIGN=2

3 CODE . . . . . . . 00004D CODE REL ALIGN=1
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CHAPTER 3 READ-ONLY VARIABLES AND THEIR 
VARIABLE AREA

This chapter describes how to use read-only variables.
A value is read or written for a variable at execution.  Therefore, the variable areas are 
mapped into RAM areas, which can be read and written.  However, there are variables 
that are at execution only read and do not need to be changed.  Examples for this type 
of variable are messages, such as opening or error messages.  Mapping variables that 
are read-only in RAM areas in the same way as normal external variables has the result 
that these RAM areas are only read at execution.  As a result, valuable RAM space will 
be wasted.  This chapter describes two methods for reducing the required areas within 
RAM.

3.1  "Numeric Constants and #define Definition"

3.2  "Defining Variables Using the const Type Qualifier"
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3.1 Numeric Constants and #define Definition

This section describes how to use the #define definition to define read-only variables 
as numeric constants.
Because this method does not allocate variable areas, RAM area usage can be 
reduced.

■ Numeric Constants and #define Definition

Figure 3.1-1 "Defining External Variables and Defining Variables Using the #define Statement"
shows an example of defining read-only variables as initialized external variables and using the
#define statement to define the read-only variables as numeric constants in a macro definition.

See function list5( ) of (1), "External variable definitions," in Figure 3.1-1 "Defining External
Variables and Defining Variables Using the #define Statement".  Because initialized variables
have been defined for function list5( ), the variable area INIT section and initial value area
DCONST section are generated.  At linkage, the initial value area DCONST section is mapped
into the ROM area.  The variable area INIT section is mapped into the RAM area.  The startup
routine transfers the initial value in the ROM area to the RAM area.  The following variables are
defined for function list5( ):

• char-type variable (1 byte) c_max

• int-type variable (2 bytes) maxaddr

• float-type variable (4 bytes) pai

• double-type variable (8 bytes) d_data

The variable area INIT is allocated in the RAM area for these variables.  Read-only variables
are not written to at execution.  From the viewpoint of economical use of the RAM area, this 15-
byte variable area will be wasted.

The value of an external variable is referenced on the basis of the address of the external
variable.

As shown below, the size of the code generated at reference depends on the variable type.

• To reference a char-type (1 byte) variable:  6 bytes

• To reference an int-type (2 bytes) variable:  5 bytes

• To reference a float-type (4 bytes) variable:  7 bytes

• To reference a double-type (8 bytes) variable:  11 bytes

See the function list6( ) of (2), "Defining numeric constants using the #define statement," in
Figure 3.1-1 "Defining External Variables and Defining Variables Using the #define Statement".
Function list6( ) defines c_max, maxaddr, pai, and d_data using the macro definition of the
#define statement.  The value of the macro-defined numeric constant is embedded in the code,
and a variable area is not generated.  Because the code for referencing the external variable is
not generated, the total code length will be relatively short.  The execution speed will also be
increased.  The code to be generated depends on the numeric constant.

Macro-defined variables have no type.  Therefore, type conversion may be performed at
assignment depending on the type of the variable to be assigned.  This can lead to unexpected
results.
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Figure 3.1-1  Defining External Variables and Defining Variables Using the #define Statement

The above results for read-only variables can be summarized as follows:

Defining a variable as an initialized external variable

Variable area is allocated in RAM even though no writing is performed.

Defining a variable as a numeric constant

The variable area is not allocated in RAM.

Since the value is directly embedded in the code, the execution speed is higher than for
using external variables.

Because the type of these values is not clearly defined, unexpected operation results can
occur due to type conversion.

From the viewpoint of economical use of RAM area, it is more efficient to define read-only
variables as numeric constants.  As the values of numeric constants are directly accessed,
processing speed will increase.  However, if the number of accesses to numeric constants
increases, the size of the generated code generated will increase proportionally to the number
of accesses to numeric constants.

Whether to define read-only variables as normal external variables or as numeric constants
must be decided based on the nature of the program system to be created.  For a program
system where the processing speed is more important than the size of the ROM area, it will be
more efficient to use constant values defined using the #define statement.

(1)  External variable definitions (2)  Defining numeric constants using the #define

When an initialized global variable is defined, the 
variable area INIT and initial value area DCONST 
are generated.  In addition, the code for referencing 
the external variable is generated during reference.

When the #define statement is used, a variable area is 
not generated.
Because the numerical data are embedded in the code,
the size of the code is smaller than when referencing
external variables.

 statement
1 char c_max = 250;

2 int maxaddr = 32767;

3 float pai = 3.14159;

4 double d_data = 0xffff0000;

5

6 void list5(void)

7 {

8 char c_data;

9 int i_data;

10 float f_data;

11 double l_data;

12

13 c_data = c_max;

14 i_data = maxaddr;

15 f_data = pai;

16 l_data = d_data;

17 }

1 #define c_max 250

2 #define maxaddr 32767

3 #define pai 3.14159

4 #define d_data 0xffff0000

5

6 void list6(void)

7 {

8 char c_data;

9 int i_data;

10 float f_data;

11 double l_data;

12

13 c_data = c_max;

14 i_data = maxaddr;

15 f_data = pai;

16 l_data = d_data;

17 }

;;;; c_data = c_max;

MOV A, _c_max

MOV @RW3+-15, A

;;;; i_data = maxaddr;

MOVW A, _maxaddr

MOVW @RW3+-14, A

;;;; f_data = pai;

MOVL A, _pai

MOVL @RW3+-12, A

;;;; l_data = d_data;

MOVEA A, @RW3+-8

MOVW A, #_d_data

MOVW RW0, #8

MOVSI DTB, DTB

;;;; c_data = c_max;

MOV @RW3+-15, #250

;;;; i_data = maxaddr;

MOVW @RW3+-14, #32767

;;;; f_data = pai;

MOVL A, #1078530000

MOVL @RW3+-12, A

;;;; l_data = d_data;

MOVN A, #0

ZEXTW

MOVL @RW3+-8, A

MOVL A, #1106247648

MOVL @RW3+-8+4, A

NO SECTION-NAME SIZE ATTRIBUTES

0 DCONST . . . . . 00000F CONST REL ALIGN=2
1 INIT . . . . . . 00000F DATA REL ALIGN=2
2 CODE . . . . . . 000025 CODE REL ALIGN=1

NO SECTION-NAME SIZE ATTRIBUTES

0 CODE . . . . . . 000022 CODE REL ALIGN=1

.SECTION DCONST, CONST, ALIGN=2

.ALIGN 2

.FDATA.D H'41EFFFE000000000

.ALIGN 2

.FDATA.S H'40490FD0

.ALIGN 2

.DATA.H 32767

.DATA.B 250

.SECTION INIT, DATA, ALIGN=2

.ALIGN 2

.GLOBAL _d_data
_d_data:

.FRES.D 1

.ALIGN 2

.GLOBAL _pai
_pai:

.FRES.S 1

.ALIGN 2

.GLOBAL _maxaddr
_maxaddr:

.RES.H 1

.GLOBAL _c_max
_c_max:

.RES.B 1
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3.2 Defining Variables Using the const Type Qualifier

This section describes how to define read-only variables using the "const" type 
qualifier.
Because this method directly accesses the initial value areas allocated in ROM, the 
size of the RAM area can be reduced.

■ Defining Variables Using the "const" Type Qualifier

Figure 3.2-1 "Output Section of a Variable Declared with the const Type Qualifier and Mapping
into Memory" shows the relationship between the section to which a variable is output as a
result of compilation and mapping into memory.

A const type-qualified variable is normally output to the variable area CONST section only.  This
CONST section is mapped into the ROM area.  When a variable is accessed, the variable area
in the ROM area is accessed directly.

Handling of a const-type qualified variable depends on the hardware, compiler, and memory
model to be used.  See Chapter 2 "MAPPING VARIABLES QUALIFIER WITH THE TYPE
QUALIFIER const" for details on mapping a const-type qualified variable.

Figure 3.2-1  Output Section of a Variable Declared with the const Type Qualifier and Mapping into 
Memory

Figure 3.2-2 "Defining External Variables and Defining Variables Using the const Type Qualifier"
shows a function that defines a read-only value as an initialized external variable and a function
that defines the value as variable declared with the const type qualifier.

See function list5( ) of (1), "External variable definitions," in Figure 3.2-2 "Defining External
Variables and Defining Variables Using the const Type Qualifier". Because initialized variables
have been defined for function list5(  ), the variable area INIT section and initial value area
DCONST section are generated.  At linkage, the DCONST section is mapped into the ROM
area.  The INIT section is mapped into the RAM area.  The startup routine transfers the initial
value in the ROM area to the RAM area.  Function list5( ) outputs char-type variable c_max, int-
type variable maxaddr, float-type variable pai, and double-type variable d_data to the variable
area INIT.  Read-only variables are not written to at execution.  As a result, this 15-byte variable

CONST
ROM area

Link

CONST
ROM area

Link

CINIT

-ramconst option

CONST CONST CINIT

The initial value area of the 
const-type qualified 
variable is mapped into the 
ROM area.  The ROM 
area is accessed when the 
variable is referenced. 

The initial value area 
CONST of the const-type 
qualified variable is 
mapped into the ROM 
area.  The startup routine 
transfers the value to the 
variable area INIT in the 
RAM area.  The RAM area 
is accessed when the 
variable is referenced.

const-type modified variable
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3.2  Defining Variables Using the const Type Qualifier
area and the RAM area will not be used economically.

See function list7( ) of (2), "Defining variables declared with the const type qualifier," in Figure
3.2-2 "Defining External Variables and Defining Variables Using the const Type Modifier".
Function list7( ) outputs a variable to the 15-byte variable area CONST section.  At linkage, the
CONST section is mapped into the ROM area.  Because the ROM area is directly accessed at
accessing, the RAM area can be used economically.

Figure 3.2-2  Defining External Variables and Defining Variables Using the const Type Qualifier

[Tip]

Softune C Checker:

The Softune C Checker outputs a warning in the following cases:

• A variable has been declared with multiple const type qualifiers.

• A variable declared with the const type qualifier has been defined, but no initial value has
been set.

• An attempt was made to change the value of a variable declared with the const type
qualifier.

Use this for reference when defining variable declared with the const type qualifier.

Softune C Analyzer:

Among the external variables of an analyzed program, the Softune C Analyzer displays
variables whose values are not changed by the program as candidates for declaration as
"const."  This is helpful for determining which variables to declare with the "const" type
qualifier.

(1)  Defining external variables

When an initialized global variable is defined, the 
variable area INIT and initial value area DCONST 
are generated.  In addition, the code for referencing 
the external variable is generated during reference.

When a variable declared with the const type
qualifier is defined, the variable area CONST is
generated.  In addition, code for accessing the
external variable is generated.

Defining variables declared with the
const type qualifier

(2)

1 char c_max = 250;

2 int maxaddr = 32767;

3 float pai = 3.14159;

4 double d_data = 0xffff0000;

5

6 void list5(void)

7 {

8 char c_data;

9 int i_data;

10 float f_data;

11 double l_data;

12

13 c_data = c_max;

14 i_data = maxaddr;

15 f_data = pai;

16 l_data = d_data;

17 }

;;;; c_data = c_max;

MOV A, _c_max

MOV @RW3+-15, A

;;;; i_data = maxaddr;

MOVW A, _maxaddr

MOVW @RW3+-14, A

;;;; f_data = pai;

MOVL A, _pai

MOVL @RW3+-12, A

;;;; l_data = d_data;

MOVEA A, @RW3+-8

MOVW A, #_d_data

MOVW RW0, #8

MOVSI DTB, DTB

NO SECTION-NAME SIZE ATTRIBUTES

0 DCONST . . . . . 00000F CONST REL ALIGN=2
1 INIT . . . . . . 00000F DATA REL ALIGN=2
2 CODE . . . . . . 000025 CODE REL ALIGN=1

1 const char c_max = 250;

2 const int maxaddr = 32767;

3 const float pai = 3.14159;

4 const double d_data = 0xffff0000;

5

6 void list7(void)

7 {

8 char c_data;

9 int i_data;

10 float f_data;

11 double l_data;

12

13 c_data = c_max;

14 i_data = maxaddr;

15 f_data = pai;

16 l_data = d_data;

17 }

;;;; c_data = c_max;

MOV A, _c_max

MOV @RW3+-15, A

;;;; i_data = maxaddr;

MOVW A, _maxaddr

MOVW @RW3+-14, A

;;;; f_data = pai;

MOVL A, _pai

MOVL @RW3+-12, A

;;;; l_data = d_data;

MOVEA A, @RW3+-8

MOVW A, #_d_data

MOVW RW0, #8

MOVSI DTB, DTB

NO SECTION-NAME SIZE ATTRIBUTES

0 CONST . . . . . 00000F CONST REL ALIGN=2

1 CODE . . . . . . 000025 CODE REL ALIGN=1

.SECTION DCONST, CONST, ALIGN=2

.ALIGN 2

.FDATA.D H'41EFFFE000000000

.ALIGN 2

.FDATA.S H'40490FD0

.ALIGN 2

.DATA.H 32767

.DATA.B 250

.SECTION INIT, DATA, ALIGN=2

.ALIGN 2

.GLOBAL _d_data
_d_data:

.FRES.D 1

.ALIGN 2

.GLOBAL _pai
_pai:

.FRES.S 1

.ALIGN 2

.GLOBAL _maxaddr
_maxaddr:

.RES.H 1

.GLOBAL _c_max
_c_max:

.RES.B 1

.SECTION CONST, CONST, ALIGN=2

.ALIGN 2

.GLOBAL _d_data
_d_data:

.FDATA.D H'41EFFFE000000000

.ALIGN 2

.GLOBAL _pai
_pai:

.FDATA.S H'40490FD0

.ALIGN 2

.GLOBAL _maxaddr
_maxaddr:

.DATA.H 32767

.GLOBAL _c_max
_c_max:

.DATA.B 250
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CHAPTER 4 USING AUTOMATIC VARIABLES TO 
REDUCE THE VARIABLE AREA

This chapter describes how to reduce variable areas using "automatic" variables.
For automatic variables, the variable areas are allocated on the stack when the 
function is called.  The variable areas are deallocated at the termination of the 
function.  Variables that are referenced only from within the function are defined as 
automatic variables to reduce the variable areas.

4.1  "Automatic Variables and Statically Allocated Variables"

4.2  "Using Automatic Variables"
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CHAPTER 4  USING AUTOMATIC VARIABLES TO REDUCE THE VARIABLE AREA
4.1 Automatic Variables and Statically Allocated Variables

This section explains which variables are allocated as automatic variables and which 
are statically allocated.
As shown in Figure 4.1-1 "Automatic Variables and Status of Variable Areas on the 
Stack", an automatic variable is a variable that has been defined in a function.  When 
the function is called, variable area is allocated in the stack for the automatic variable.  
The allocated variable area is released when the function terminates.

■ Variable Areas of Automatic Variables

Because variable area is allocated for automatic variables dynamically, automatic variables are
also referred to as a dynamically allocated variables.  Automatic variables can be referenced
only from within a function.

The position on the stack where the Automatic Variable area is allocated depends on the status
of the variable at function call.  The Automatic Variables are not initialized at allocation.
Therefore, if a variable defined as an automatic variable is used without being initialized, the
value of the variable will be unpredictable.

Figure 4.1-1  Automatic Variables and Status of Variable Areas on the Stack

h’xxxx
SP

low

userpid
h’xxxx

low

RW3

SP

i
next
prev

higt

Argument for
function init( )

Automatic Variable
defined in init( )

Status of stack at start of function init( )

Status of stack at end of 
function init( )

Return address

Previous RW3

high
32



4.1  Automatic Variables and Statically Allocated Variables
■ Statically Allocated Variables and Variable Areas in RAM

As shown in Figure 4.1-2 "Statically Allocated Variables and Variable Areas in RAM", variable
areas are allocated in the RAM area for statically allocated variables.  The areas of the statically
allocated variables are always located in the RAM area.  External variables defined outside a
function and variables declared as "static" are the statically allocated variables.  External
variables can be accessed from everywhere in the program.  Variables declared as "static" can
be classified into static local variables and static global variables depending on the location of
their definition.  The scope of the two types of variable differs.

Figure 4.1-2  Statically Allocated Variables and Variable Areas in RAM
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Fixed variable areas are allocated in RAM.
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all functions.
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CHAPTER 4  USING AUTOMATIC VARIABLES TO REDUCE THE VARIABLE AREA
■ Definition and Scope of Automatic Variables and Statically Allocated Variables

Figure 4.1-3 "Definitions and Scope of Automatic Variables and of Statically Allocated
Variables" shows scope and definitions of automatic variables and statically allocated variables.

Statically allocated variables can be divided into initialized variables and uninitialized variables.
As described above, initial value area is allocated in the ROM area and variable area is
allocated in the RAM area for an initialized variable.  For an uninitialized variable, variable area
is allocated in the RAM area.  These statically allocated variables are initialized to their initial
values or to 0 before control is passed to the C program.

Figure 4.1-3  Definitions and Scope of Automatic Variables and of Statically Allocated Variables

[Tip]

Softune C Checker:

The Softune C Checker outputs the following warnings for automatic variables:

• An automatic variable is not used

• An automatic variable is accessed without specifying a value

Softune C Analyzer:

The Softune C Analyzer lists the analysis results and the access status of external variables.
This list can be used to check from which function a defined external variable is accessed.
Variables that are only accessed by a defined module can also be identified from these
results.

C source program

Global variables

Local variable defined
in function null( )

Local variable defined in function init( )

1 extern int main(void);

2 extern int inittime(void);

3 extern int init(int);

4

5 extern int numproc;

6

7 int currpid;

8 int semno;

9 int nextsem = 0;

10

11 static int nextproc = 100;

12

13 int null(void)

14 {

15 int userpid = 10;

16

17 inittime();

18

19 currpid = init(userpid);

20 nextsem++;

21 semno = 100;

22 return(semno);

23 }

24

25 int init(int pid)

26 {

27 static int num = 50;

28 int i = 0;

29 int j;

39 return(num--);

40 }

Scope of static
global variable
nextproc

Scope of automatic
variables

Scope of automatic
variables
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4.2  Using Automatic Variables
4.2 Using Automatic Variables

This section describes the merits of using automatic variables.
Reducing the number of external variables and using automatic variables that can only 
be locally accessed within a function can result in more economical use of the variable 
area.

■ External Variables and Automatic Variables

External variables can be divided into external variables declared as "const" and those that are
not.  Area for external variables that are not declared with the const type qualifier is allocated in
RAM.  However, careful review of the created program will often find that variables that are
accessed only within a specific function have nevertheless been defined as external variables.
Defining a variable whose usage range is restricted as external variable will increase the size of
the variable area.  Reducing the number of external variables and using automatic variables,
which can be accessed only from within a function, can result in more economical use of the
variable area.

As shown in Figure 1.3-1 "Dynamically Allocated Variables", and Figure 4.1-1 "Automatic
Variables and Status of Variable Areas on the Stack", area for an automatic variable is allocated
on the stack when a function is executed.  The area is released when the function terminates.
Compared with defining an external variable for each module, this enables more economic use
of the variable area.  However, if function calls are deeply nested, the amount of variable area
allocated on the stack will increase.  Figure 4.2-1 "Nesting of Function Calls and Stack States"
shows nesting of function calls and the respective stack states.

Figure 4.2-1  Nesting of Function Calls and Stack States

Figure 4.2-2 "Using External Variables and Automatic Variables" shows an example for defining
a variable that is accessed only from within a function as an external variable and an example of
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CHAPTER 4  USING AUTOMATIC VARIABLES TO REDUCE THE VARIABLE AREA
defining the variable as a automatic variable.

Figure 4.2-2  Using External Variables and Automatic Variables

See function list8( ) of (1), "Function using an external variable" in Figure 4.2-2 "Using External
Variables and Automatic Variables".  Because the variable nextproc is defined as an external
variable for the function list8( ), the variable area allocated in RAM increased by 2 bytes.  An
external variable is accessed based on the variable address.  Therefore, the resulting code is
larger than the code for stack access.

See function list9( ) of (2), " Function that uses an automatic variable," in Figure 4.2-2 "Using
External Variables and Automatic Variables".  Function list9( ) defines the variable "next" as an
automatic variable and allocates the variable area on the stack at function execution.  The
automatic variable allocated on the stack is accessed through the frame pointer (RW3).
Therefore, the resulting code is smaller than the code for external variable access based on the
address.  In addition, the RAM area can be used more economically because the area is
released when the function terminates.

In the example shown in Figure 4.2-2 "Using External Variables and Automatic Variables", the
difference in the sizes of the data area is only 2 bytes for the external variable nextproc.  The
difference in the code generated for variable access is also 2 bytes.  It can be expected that the
size of the generated code will increase with the number of accesses to the external variable.

The amount of variable area that can be saved by reducing the number of external variables by
one will only be a few bytes.  However, it can be assumed that there are several dozens or
several hundreds of modules.  Therefore, reducing the number of wasteful external variables in
each module can economize on the variable area.

In this way, defining variables that are accessed only within specific functions as external
variables will result in wasteful use of the RAM and ROM areas.  Therefore, by keeping the
definitions of external variables to a minimum can economize on the variable area.

Similar to external variables, it is also important to keep the definitions of static variables to the
minimum number required.

When designing the system, carefully investigate the scope of the variables to be defined to
avoid meaningless definitions.

(1)  Function that uses an external variable (2)  Function that uses an automatic variable

Variable nextproc is defined as an external variable.
The allocated variable area increased by 2 bytes.
The code for variable area access is greater than
the one generated for stack access.

The variable "next" is defined as an automatic 
variable.  A variable area is allocated on the stack 
at executionand released when the function 
terminates.

1 #define MAXPROC 100

2 #define ERR 1

3

4 int procno;

5 int currproc;

6 int nextproc;

7

8 int list8(void)

9 {

10 if ((MAXPROC - procno) >= 0){

11 procno++;

12 nextproc = currproc + 1;

13 return(nextproc);

14 }

15 else

16 return(ERR);

17 }

1 #define MAXPROC 100

2 #define ERR 1

3

4 int procno;

5 int currproc;

6

7 int list9(void)

8 {

9 int next;

10

11 if ((MAXPROC - procno) >= 0){

12 procno++;

13 next = currproc + 1;

14 return(next);

15 }

16 else

17 return(ERR);

18 }

NO SECTION-NAME SIZE ATTRIBUTES

0 DATA . . . . . . . . 000006 DATA REL ALIGN=2

1 CODE . . . . . . . . 000022 CODE REL ALIGN=1

NO SECTION-NAME SIZE ATTRIBUTES

0 DATA . . . . . . . . 000004 DATA REL ALIGN=2

1 CODE . . . . . . . . 000020 CODE REL ALIGN=1

35 ;;;; nextproc = currproc + 1;
CO 000010 5A0000 R 36 MOVW A,_currproc

CO 000013 D1 37 MOVN A, #1
CO 000014 28 38 ADDW A

CO 000015 5B0000 R 39 MOVW _nextproc, A

40 ;;;; return(nextproc);

CO 000018 5A0000 R 41 MOVW A,_nextproc

CO 00001B 6003 42 BRA L_24
CO 00001D 6001 43 BRA L_25

CO 00001F 44 L_23:

30 ;;;; next = currproc + 1;
CO 000010 5A0000 R 31 MOVW A,_currproc

CO 000013 D1 32 MOVN A, #1
CO 000014 28 33 ADDW A

CO 000015 CBFE 34 MOVW @RW3+-2, A

35 ;;;; return(next);

CO 000017 BBFE 36 MOVW A, @RW3+-2

CO 000019 6003 37 BRA L_24
CO 00001B 6001 38 BRA L_25

CO 00001D 39 L_23:
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4.2  Using Automatic Variables
[Tip]

Softune C Analyzer:

The Softune C Analyzer lists the analysis results and the access status of external variables.
This list can be used to determine from which function a defined external variable is
accessed.  Variables that are only accessed by a defined module can also be identified from
these results.

The Softune C Analyzer checks for function calls that use large amounts of the stack in the
program system based on the amount of stack use calculated by the fcc907.  The Softune C
Analyzer then visually displays the routes and amounts of usage.  This information is useful
for reducing the amount of stack usage.
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CHAPTER 5 ACCESSING VARIABLES THAT USE BIT 
FIELDS

This chapter describes how to access variables that use bit fields.
Using a bit field enables accessing each bit in a byte to be accessed.

5.1  "Boundary Alignment of fcc907"

5.2  "Bit Field Definitions and Boundary Alignment"

5.3  "Accessing I/O Areas Using Bit Fields and Unions"
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CHAPTER 5  ACCESSING VARIABLES THAT USE BIT FIELDS
5.1 Boundary Alignment of fcc907

This section briefly describes the boundary alignment of the fcc907.
For the fcc907 processing, variables are allocated to memory in accordance with the 
variable allocation size and boundary alignment.

■ Boundary Alignment of fcc907

Table 5.1-1 "Boundary Alignment of fcc907" lists the relationship between fcc907 variable types,
allocation size, and boundary alignment.

In the fcc907 maps variables in memory based on allocation size and boundary alignment.
When an odd number of char-type variables is defined, the subsequent 2- or 4-byte variable is
mapped to an odd address.  Unused areas are not generated.  However, accessing a 2- or 4-
byte variable that was mapped to an odd address may take longer than accessing a 2- or 4-byte
variable that was mapped to even address.  Care must be taken when variables of the type char
are defined in array elements or members of a structure.

Table 5.1-1  Boundary Alignment of fcc907

Variable type
Allocation size (bytes) Boundary alignment 

(bytes)

char 1 1

signed char 1 1

unsigned char 1 1

short 2 2

unsigned short 2 2

int 2 2

unsigned int 2 2

long 4 2

unsigned long 4 2

float 4 2

double 8 2

long double 8 2

near Pointer/address 2 2

for Pointer/address 4 2
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5.2  Bit Field Definitions and Boundary Alignment
5.2 Bit Field Definitions and Boundary Alignment

This section describes bit field definitions and boundary alignment for memory 
allocation.
Bit fields allow accessing each bit within a byte.  However, depending on the boundary 
alignment conditions, it may not be possible to access some areas.

■ Bit Field Definitions and Boundary Alignment

Bit fields allow to access each bit within a byte.

Figure 5.2-1 "Bit Field Allocation 1 for the F2MC-16 Family" shows the bit field assignment for
the fcc907.

Figure 5.2-1  Bit Field Allocation 1 for the F 2MC-16 Family

As shown in Figure 5.2-1 "Bit Field Allocation 1 for the F2MC-16 Family", the fcc907 allocates
contiguous bit field data starting from the least significant bit (LSB) regardless of the type.

When a bit field is to be allocated over a type boundary, the field is allocated starting from a
boundary that is appropriate for the type.

Figure 5.2-1 "Bit Field Allocation 1 for the F2MC-16 Family" shows an example of bit field
allocation with boundary alignment for structure tag2.  In this example, int-type 12-bit bit field A
is first allocated in memory.  An attempt is then made to allocate int-type 5-bit bit field B.  If one
bit lies off the boundary, the boundary alignment operates so that B is mapped starting from a
boundary appropriate to the type "int."  In the process, an empty space of four bits is generated.

■ Bit Fields of Bit Field Length 0

When a bit field of length 0 is defined, the next field is forcibly allocated starting with the next
storage unit.

Figure 5.2-2 "Bit Field Allocation 2 for the F2MC-16 Family" shows an example of allocation of a
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CHAPTER 5  ACCESSING VARIABLES THAT USE BIT FIELDS
bit field of length 0.  In this example, an int-type 5-bit bit field A is first allocated in memory.
Next, a 5-bit int-type bit field B is allocated.  Then, a 6-bit int-type bit field C is to be allocated.
However, a bit field of length 0 has been defined before bit field C.  As a result, the C area is
allocated after empty space up to the next storage unit is forcibly allocated.  Because the int-
type boundary alignment is made in units of one byte, a 6-bit free area is generated.

Figure 5.2-2  Bit Field Allocation 2  for the F 2MC-16 Family

■ Definitions of Bit Fields of Different Types

Continuous bit fields of the same type are stored from the least significant bit (LSB) up to the
most significant bit (MSB).  When a bit field of a type that differs from that of the preceding bit
field is defined, the new bit field is forcibly allocated starting with the next storage unit.

Figure 5.2-3 "Bit Field Allocation 3 for the F2MC-16 Family" shows an example of allocation
when different type bit fields are defined.  In this example, int-type 2-bit bit field A and then an
int-type 6-bit bit field are allocated in memory before a char-type 4-bit bit field is defined.  Even
though the types are different, no free areas are generated because the bit fields are allocated
precisely on the boundaries.  Int-type 10-bit bit field D is then defined.  Because the type is
different, the D area is allocated after free empty space up to the next storage unit is allocated.
Finally, because a bit field of length 0 has been defined, int-type bit field F is allocated starting
from the next storage unit.

Figure 5.2-3  Bit Field Allocation 3 for the F 2MC-16 Family
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5.2  Bit Field Definitions and Boundary Alignment
■ Signed Bit Fields

When a signed bit field is defined, the highest order bit of the bit field is used as the sign bit.

When a signed 1-bit bit field is defined, the bit field consists of only the sign bit.

Figure 5.2-4 "Definitions of Signed Bit Fields" shows an example of a definition of signed bit
fields.  In this example, 1-bit bit field A is defined as a signed bit field.  If s_data.A=1 is assigned
before checking for s_data.A = =1, the obtained result will be false.

Figure 5.2-4  Definitions of Signed Bit Fields

[Tip]

Softune C Checker:

The Softune C Checker outputs a warning message for structure variables or union variables
in which a free field occurs.  If a warning message is output, check the definitions of the
structures and unions again.

When a signed bit field is defined, the highest order bit of the bit field is used as the sign bit.

Sign bits

Free

When a signed 1-bit bit field
is defined, the bit field consists
of only the sign bit.

When 1 is assigned to signed bit field s_data.A and
then s_data.A = =1 is checked, the result is false.

When 1 is assigned to unsigned bit field s_data.B and
then s_data.B = =1 is checked, the result is true.
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CHAPTER 5  ACCESSING VARIABLES THAT USE BIT FIELDS
5.3 Accessing I/O Areas Using Bit Fields and Unions

This section describes how to access bit fields in bit units and entire bit fields of 
unions.  This method is not directly related to using less RAM area, but it can facilitate 
access to registers mapped into the I/O area.

■ Accessing I/O Areas Using Bit Fields and Unions

If a structure is defined as a bit field, each field can be accessed or assigned individually, but
the entire structure cannot be accessed as such.  Moreover, data cannot be assigned to the
entire structure in a batch operation.  Defining the structure as a union as shown in Figure 5.3-1
"Accessing the I/O Area with Bit Fields and Unions" enables to access both the values of
individual bits or the entire structure.  In this example, bit field structures and variables of the
type "unsigned short" are defined as unions.  Therefore, data can be accessed either bit units or
as variables of the type "unsigned short."

Figure 5.3-1  Accessing the I/O Area with Bit Fields and Unions

The values of the hardware registers that are allocated to the input-output areas of the F2MC-16
family can be referenced in bit units or collectively.  When a union is defined for such hardware
registers, a value can be assigned in the manner shown below.

A value can also be directly assigned to a bit field as shown below.

This approach facilitates access to registers mapped into the I/O area.

IO_TMCSR0 = 0x081b;

IO_TMCSR.bit.UF = 0x01;

A value is assigned for the entire IO_TMCSR0 as an unsigned short type variable.

One is set for bit field UF.

91112131415 8

CLR1Free CLR0 MOD2 MOD1

7 6

CUTE

5

OUTL

4 3 2 1 0

RELO INTE UF CNTE TRG

10

MOD0

union io_tmcsr {

unsigned short word;
struct {

unsigned short TRG :1;

unsigned short CNTE:1;
unsigned short UF :1;
unsigned short INTE:1;
unsigned short RELD:1;

unsigned short OUTL:1;

unsigned short OUTE:1;
unsigned short MOD :3;
unsigned short CSL :2;

unsigned short :4;
} bit;

/* I/O Area Address */
#ifdef __IO_DEFINE
#pragma section IO=IO_REG,locate=0x000000
#endif

__IO_EXTERN __io union io_pdr0 IO_PDR0;

__IO_EXTERN __io union io_tmcsr IO_TMCSR0;

__IO_EXTERN __io unsigned short IO_TMR0;

__IO_EXTERN __io union io_tmcsr IO_TMCSR1;
__IO_EXTERN __io unsigned short IO_TMR1;

word

};

IO_TMCSRO.word = 0x081b;

IO_TMCSRO.bit.UF = 0x01;
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PART II USING STACK AREA EFFICIENTLY

Part II describes how to use stack areas efficiently in C programs.
Part II first briefly describes the states of the stack areas at a function call.  It then 
describes how to use the stack areas efficiently.

CHAPTER 6  "FUNCTION CALLS AND THE STACK"

CHAPTER 7  "REDUCING FUNCTION CALLS BY EXPANDING FUNCTIONS 
IN LINE"

CHAPTER 8  "REDUCING ARGUMENTS TO CONSERVE STACK AREA"

CHAPTER 9  "CONSERVING STACK AREA BY IMPROVEMENTS ON THE 
AREA FOR FUNCTION RETURN VALUES"
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CHAPTER 6 FUNCTION CALLS AND THE STACK

Before describing how to use the stack area effectively, this chapter describes the 
areas that are allocated on the stack when a function is called.
When a function is called, areas, such as the areas for arguments, are allocated on the 
stack as necessary.

6.1  "Areas Allocated on the Stack during Function Calls"

6.2  "Stack States When Function Calls Are Nested"
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CHAPTER 6  FUNCTION CALLS AND THE STACK
6.1 Areas Allocated on the Stack during Function Calls

When a C program calls a function, a return address storage area and a previous frame 
pointer (RW3) save area are always allocated on the stack.

■ Areas Allocated on the Stack at Function Call

When a C program calls a function, the following areas are allocated on the stack as shown in
Figure 6.1-1 "Areas Allocated on the Stack when a Function is Called":

❍ Actual argument and dummy argument areas

Used to hand over arguments during function calls.

• Actual argument:  Argument specified by the calling function

• Dummy argument:  Argument accessed by the called function

❍ Return address save area

Used to store the address for returning to the calling function.

This area is acquired or released by the calling function.

❍ Previous frame pointer save area

Used to save the value of the frame pointer (RW3 register) of the source calling the function.

❍ Local variable area

Used to store local variables or work variables.

This area is allocated at function entry, and released at function exit.

The size of this area depends on the number of the local variables to be stored.  The greater the
number of variables defined in the function, the larger the area allocated.

❍ Register save area

This area is used to save registers that must be preserved for the calling source.

This area is not allocated when no registers need to be saved.

❍ Return address value save area

This area is used to save the leading address of the area used to store the return value of
functions that return double type, long double type, structure type, or union type value.
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6.1  Areas Allocated on the Stack during Function Calls
Figure 6.1-1  Areas Allocated on the Stack When a Function Is Called

Out of the areas shown in Figure 6.1-1 "Areas Allocated on the Stack When a Function Is
Called", the return address storage area and old frame pointer save area are always allocated
at function call.  Other areas are allocated depending on the defined function.  The greater the
number of arguments to be passed to the function and number of local variables to be defined in
the function, the larger the areas allocated on the stack.
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CHAPTER 6  FUNCTION CALLS AND THE STACK
6.2 Stack States When Function Calls Are Nested

The areas allocated on the stack for a function are released when the function 
terminates.  The deeper the nesting of function calls nesting, the greater is the amount 
of stack used.

■ Stack States When Function Calls Are Nested

Figure 6.2-1 "Nesting of Function Calls" shows the stack states for nested function calls.  The
areas allocated on the stack are released when the function terminates.  However, releasing
stack areas is not sufficient to guarantee that the stack is used efficiently.  If function calls are
deeply nested, new areas will be allocated above the previously allocated areas.  As a result,
the used stack areas will increase by that amount.

The best method for reducing used stack space is to avoid function calls.  However, this is
impractical because this would mean that one program system would have to consist of a single
function only.  Of the areas described above, the return address and old frame pointer areas are
always allocated when a function is called.  The other areas depend on the called function.
Therefore, stack use can be minimized if both the number of function calls and the areas
allocated on the stack when a function is called are reduced.

Figure 6.2-1  Nesting of Function Calls

low

low

userpid

high

SP

SP

high

high

SP

i
pid

dummy
[4]moji
[3]
[2]
[1]
[0]

low

SP

high

low

i
next
prev

Previous RW3

Return address

Return address

Previous RW3

moji
moji
moji
moji

Auto
variables
of init( )

Stack status when function start( ) starts

Stack status when start( )
terminates

Stack status when function
init( ) terminates

Stack status when function init( ) starts

Auto
variables
of start( )

h'xxxx

h'xxxx
h'aaaa

h'aaaa

h'aaaa
50



CHAPTER 7 REDUCING FUNCTION CALLS BY 
EXPANDING FUNCTIONS IN LINE

This chapter describes how to use inline expansion of functions to reduce function 
calls.  Expanding functions in line reduces the amount of stack area required.

7.1  "Inline Expansion of Function"

7.2  "Conditions for Inline Expansion of Function"
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CHAPTER 7  REDUCING FUNCTION CALLS BY EXPANDING FUNCTIONS IN LINE
7.1 Inline Expansion of Function

This section gives a simple description of the inline expansion of functions.  When a 
specified function is called, the function body is directly expanded in line.

■ Inline Expansion of Function

The fcc907 uses the following format to specify the inline expansion of functions:

The function to be inline-expanded can also be specified using the -x option when starting the
compiler as follows:

Figure 7.1-1 "Inline Expansion of a Function" shows an example of inline expansion of a
function.  The inline expansion is specified with "#pragma inline function-name."  When the
specified function is called, it is expanded inline.

Figure 7.1-1  Inline Expansion of a Function

#pragma  inline   name-of-function-to-be-inline-expanded

-X   name-of-function-to-be-inline-expanded

Code for the function body
is generated because the
call is an ordinary call

Inline
expansion

Because the inline expansion
is specified, the code of function
checksum( ) is embedded.

Specification
of inline
expansion
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7.1  Inline Expansion of Function
■ When Inline Expansion Is Not Executed Even Though #pragma Inline Is Specified

Figure 7.1-2 "Example in Which Inline Expansion Is Not Executed" shows an example of when
inline expansion is not executed even though #pragma inline is specified.

In this example, inline expansion of function checksum( ) is specified on line 16.  However,
because optimization using the -O option (level greater than-O 1) has not been specified for the
compiler, the usual function checksum( ) on line 22  is called.

Figure 7.1-2  Example In Which Inline Expansion Is Not Executed

<Notes>

To have the fcc907 execute inline expansion of a function, always specify optimization using
the -O option in addition to specifying inline expansion.

Even though inline expansion is specified using #pragma inline, inline expansion will not be
executed if optimization (level greater than-O 1) is not specified for compilation.

Specifying only the -O option will default to optimization level 2 (-O 2)

10

i
res

Local variable (2 bytes) of
function proc_block01( )

Area for arguments (4 bytes) at
function checksum( ) calling

Local variable (4 bytes) of
function checksum( )

Return address

Return address

Previous RW3

Previous RW3

Stack status when function
checksum( ) was called from
function proc_block01

Compilation without
optimization specification

Even if inline expansion is specified with "#pragma
inline," inline expansion will not be executed if
optimization (level greater than-O 1) is not specified
for the compiler.

temp

block01

;;;; temp = checksum(block01, 10);

MOVN A, #10

PUSHW A

MOVW A, #_block01

PUSHW A

CALL _checksum

ADDSP #4

MOVW @RW3+-2, A

NO SECTION-NAME SIZE ATTRIBUTES

0 CODE . . . . . . . . . . . . . . 000033 CODE REL ALIGN=1

1 extern char block01[10];

2 extern char block02[20];

3

4 int checksum(char *data, int length)

5 {

6 int res;

7 int i;

8

9 res = 0;
10 for(i = 0; i < length; i++){

11 res += (int)*data;

12 }

13 return(res & 0x00ff);

14 }

15

16 #pragma inline checksum

17
18 int proc_block01(void)

19 {

20 int temp;

21

22 temp = checksum(block01, 10);

23 return(temp);

24 }
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CHAPTER 7  REDUCING FUNCTION CALLS BY EXPANDING FUNCTIONS IN LINE
■ Executing Inline Expansion Using the #pragma inline Specification

Figure 7.1-3 "Inline Expansion" shows an example in which #pragma inline expansion is
specified and optimization using the -O option is specified for compilation.

In this example, the inline expansion of function checksum( ) is specified on line 16.  Because
optimization using the (-O 4) option is specified for compilation, the function checksum( ) on line
22 is inline-expanded.  Because there may be a normal function call to the function  checksum(
), the code of the entire function is also generated.  Specifying the inline expansion of a function
reduces the size of stack used compared with using a function call.  Because the code of
function checksum( ) is embedded in the function proc_block01( ), faster processing can be
expected.  Because the code of function checksum( ) is inserted into line 22, code larger than
that for the ordinary function call is generated.

Figure 7.1-3  Inline Expansion

Compilation by
specifying "-O 4"

Also the code of function
checksum( ) that is to be
inline-expanded is
generated.

.PROGRAM inline_func

.LIBRARY "lib907s.lib"

.GLOBAL _block02

.GLOBAL _block01

.SECTION CODE, CODE, ALIGN=1

;-------begin_of_function
.GLOBAL _checksum

_checksum:

LINK #0

MOVN A, #0

MOVW RW5, A

MOVN A, #0

MOVW RW4, A
BRA L_46

L_44:

MOVW A, @RW3+4

MOV A, @A

ADDW RW5, A

INCW RW4

L_46:

MOVW A, RW4

CMPW A, @RW3+6

BLT L_44

MOVW A, RW5

ZEXT

UNLINK

RET

;-------begin_of_function

.GLOBAL _proc_block01

_proc_block01:
;;;; {

;;;; {

;;;; res = 0;

MOVN A, #0

MOVW RW5, A
;;;; for(i = 0; i < length; i++){

MOVN A, #0

MOVW RW4, A

BRA L_54

L_52:
;;;; res += (int)*data;

MOV A, _block01

ADDW RW5, A
;;;; }

INCW RW4
;;;; for(i = 0; i < length; i++){

L_54:
;;;; }

MOVW A, RW4

MOVN A, #10

CMPW A

BLT L_52
;;;; return(res & 0x00ff);

MOVW A, RW5

ZEXT
;;;; temp = checksum(block01, 10);

;;;; return(temp);

;;;; }

RET

.END

NO SECTION-NAME SIZE ATTRIBUTES

0 CODE . . . . . . . . . . . . . . 00002F CODE REL ALIGN=1

1 extern char block01[10];

2 extern char block02[20];

3

4 int checksum(char *data, int length)

5 {

6 int res;

7 int i;

8

9 res = 0;

10 for(i = 0; i < length; i++){

11 res += (int)*data;

12 }

13 return(res & 0x00ff);

14 }

15

16 #pragma inline checksum

17

18 int proc_block01(void)

19 {

20 int temp;

21

22 temp = checksum(block01, 10);

23 return(temp);

24 }

Because inline expansion is
specified, the code of function
checksum( ) is embedded.
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7.2  Conditions for Inline Expansion of Function
7.2 Conditions for Inline Expansion of Function

This section explains the conditions for inline expansion of a function.
Only the functions that were defined in the same file can be inline-expanded.

■ Conditions for Inline Expansion of Function

When a function is inline-expanded, the code of the function is directly inserted into the line of
the function call.  Therefore, inline expansion can be executed only for functions defined in the
same file.

The fcc907 does not generate code if a function declared as "static" is specified for #pragma
inline and optimization (level greater than-O 1) is specified.

Figure 7.2-1 "Inline Expansion of Function Declared as "static"" shows an example in which a
function declared as "static" is specified for #pragma inline and optimization using the (-O 4)
option is specified.

In this example, inline expansion is specified on line 16.  Because the function checksum( ) is
declared as "static", the function is not referenced from other modules.  Therefore, because
code for function checksum( ) will not be generated, the size of the code will be smaller.
However, if inline expansion is frequently executed, code larger than that for function
checksum( ) can be generated.

Figure 7.2-1  Inline Expansion of Function Declared as "static"

Code for the function 
checksum( ), which is 
to be inline-expanded, 
isnot generated.

NO SECTION-NAME SIZE ATTRIBUTES

0 CODE . . . . . . . . . . . . . . 000015 CODE REL ALIGN=1

.SECTION CODE, CODE, ALIGN=1

;-------begin_of_function

.GLOBAL _proc_block01

_proc_block01:
;;;; {

;;;; {

;;;; res = 0;

MOVN A, #0

MOVW RW5, A
;;;; for(i = 0; i < length; i++){

MOVN A, #0

MOVW RW4, A

BRA L_46

L_44:
;;;; res += (int)*data;

MOV A, _block01

ADDW RW5, A
;;;; }

INCW RW4
;;;; for(i = 0; i < length; i++){

L_46:
;;;; }

MOVW A, RW4

MOVN A, #10

CMPW A

BLT L_44
;;;; return(res & 0x00ff);

MOVW A, RW5

ZEXT
;;;; temp = checksum(block01, 10);

;;;; return(temp);

;;;; }

RET

.END

1 extern char block01[10];

2 extern char block02[20];

3

4 int checksum(char *data, int length)

5 {

6 int res;

7 int i;

8

9 res = 0;

10 for(i = 0; i < length; i++){

11 res += (int)*data;

12 }

13 return(res & 0x00ff);

14 }

15

16 #pragma inline checksum

17

18 int proc_block01(void)

19 {

20 int temp;

21

22 temp = checksum(block01, 10);

23 return(temp);

24 }

Compilation while
specifying "-O 4"

Because inline expansion is
specified, the code of function
checksum( ) is embedded.
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CHAPTER 7  REDUCING FUNCTION CALLS BY EXPANDING FUNCTIONS IN LINE
<Notes>

In the following cases, inline expansion is not executed even if specified:

• Optimization with the "-O option was not specified for compilation.

• Inline expansion was specified for a recursively called function.

• Inline expansion was specified for a function for which a structure or union was specified as
argument.

• Inline expansion was specified for a file in which the setjmp function is called.

• Inline expansion was specified in a file containing the _ _asm statement.

• Arguments between functions do not match.

[Tip]

For the fcc907:

The number of lines of a function to be inline-expanded can be specified with the following
size option for compilation.

When this option is specified, the functions that are specified with the size option are inline-
expanded in compilation units.  When the size option is not specified, functions consisting of
thirty lines or less are inline-expanded.  Also in this case, the optimization (-O 1 or more)
must be specified with the "-O" option.

Specifying the ADDSP option can reduce the overhead for function call processing and
generate high-speed objects that are smaller than usual.  However, this option will
collectively release the actual argument areas accumulated on the stack for function calls. If
this option is not specified, the amount of stack used will increase.

Softune C Analyzer:

The upper limit of the number of lines of a function to be inline-expanded can be specified.
When analysis is executed with this option specified, the Softune C Analyzer will list the
functions that are candidates for inline expansion after the analysis is completed.  This
function is helpful in determining the functions that will be expanded in line.

-xauto   size-option

-K ADDSP-option
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CHAPTER 8 REDUCING ARGUMENTS TO CONSERVE 
STACK AREA

This chapter describes how to use fewer arguments in function calls as means of 
reducing the amount of stack area used.
The best way to conserve the stack is to avoid all function calls, but this is not 
practical.  CHAPTER 7  "REDUCING FUNCTION CALLS BY EXPANDING FUNCTIONS IN 
LINE" already explained described how to use inline expansion to conserve stack area.  
However, depending on the function size and processing conditions, it may not be 
possible to conserve stack area by inline expansion.  This chapter describes a second 
method for stack conservation:  Conserving stack area by reducing the argument 
count.

8.1  "Passing Arguments During Function Calls"

8.2  "Conditions for Structure Address Transfer"
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CHAPTER 8  REDUCING ARGUMENTS TO CONSERVE STACK AREA
8.1 Passing Arguments During Function Calls

This section describes how to pass arguments during function calls.
When a function is called, the fcc907 stacks these arguments and passes them to the 
called function.  Reducing the number of arguments for function calls conserves stack 
area.  The following section describes how argumetns are passed at the example of a 
variable that is defined as a structure.

■ Argument Passing and Stack Usage Size

When a function is called, the fcc907 stacks these arguments and passes them to the called
function.  The greater the number of arguments, the larger the stack area used.  Reducing the
number of arguments for function calls conserves stack area.

The following three methods for passing arguments are explained for variables defined as a
structure:

• Normal Argument Passing

• Argument Structure Passing

• Address Passing of Structures

Figure 8.1-1 "Variable that is Defined as a Structure" shows an example for a variable that is
defined as a structure.

Figure 8.1-1  Variable That Is Defined as a Structure

data1
data2

* msg "Hello !!"

Character string

Structure type frame declaration
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8.1  Passing Arguments During Function Calls
8.1.1 Normal Argument Passing

During normal argument passing, arguments are stored on the stack sequentially 
before calling the function.  Therefore, the greater the number of arguments, the larger 
the stack area used.

■ Normal Argument Passing

Figure 8.1-2 "Normal Argument Passing" shows an example for normal argument passing.  In
this example, a 6-byte area for saving three arguments is allocated on the stack.  To copy these
arguments on the stack, a 9-byte code is required.

A 28-byte stack area is required for processing from calling function func_sub1( ) to its
execution.  (See (1), "Normal argument passing," in Figure 8.1-5 "Stack Usage Size Depending
on Argument Type during Function Calls".)

Figure 8.1-2  Normal Argument Passing

To pass three arguments, a 6-byte
area is allocated on the stack. 
To copy the arguments on the
stack, a 9-byte code is required.

The arguments a and b
copied on the stack are
accessed.

The argument *moji that 
was copied on the stack
is referenced.

#define FIRST 20
#define SECOND 40

struct list{
int data1;
int data2;
char *msg;

};

func_main(void)
{

int a;
struct list code;

code.data1=FIRST;
code.data2=SECOND;
code.msg="Hello !!";

a=func_sub1(code.data1, code.data2, code.msg);
}

int func_sub1(int a, int b, char *moji)
{

int total;
char *c;
char mojiretu[10];

total = a + b;
c = mojiretu;
while(*moji){

*c++ = *moji++;
}
return(total);

}

;;;; a=func_sub1(code.data1, code.data2, code.msg);
MOVW A, @RW3+-2
PUSHW A
MOVW A, @RW3+-4
PUSHW A
MOVW A, @RW3+-6
PUSHW A
CALL _func_sub1
ADDSP #6
MOVW @RW3+-2, A

;;;; total = a + b;
MOVW A, @RW3+4
ADDW A, @RW3+6
MOVW @RW3+-4, A

;;; while(*moji){
L_27:
;;;; while(*moji){

MOVW A, @RW3+8
MOV A, DTB:@A
BEQ L_26

;;;; *c++ = *moji++;
MOVW A, @RW3+-2
MOVW RW0, A
MOVN A, #1
ADDW A
MOVW @RW3+-2, A
MOVW A, @RW3+8
MOVW RW1, A
MOVN A, #1
ADDW A
MOVW @RW3+8, A
MOV A, @RW1
MOV @RW0, A

NO SECTION-NAME SIZE ATTRIBUTES

0 CONST . . . . . . . . . . . . . 000009 CONST REL ALIGN=2

1 CODE . . . . . . . . . . . . . . 000051 CODE REL ALIGN=1
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CHAPTER 8  REDUCING ARGUMENTS TO CONSERVE STACK AREA
8.1.2 Argument Structure Passing

Argument structure passing can be performed with very simple C code.  However, in 
this method of argument passing, all structure elements are copied on the stack and 
then passed to the function.  Therefore, the larger the number of elements of the 
structure to be passed, the larger the stack area used.

■ Argument Structure Passing

Figure 8.1-3 "Argument Structure Passing" shows an example of argument structure passing.
In this example, a 6-byte area for arguments is allocated on the stack in the same way as
explained in Section 8.1.1 "Normal Argument Passing".  In addition, an 11-byte code is required
for copying the structure to the stack.

A 28-byte stack area is required for processing from calling function func_sub2( ) to its
execution.  (See (2), "Argument structure passing," in Figure 8.1-5 "Stack Usage Size
Depending on Argument Type during Function Calls".)

It is very easy when coding in C to specify a structure as an argument, but this method is not
very efficient in terms of the generated code and the required stack size.

Figure 8.1-3  Argument Structure Passing

To pass the argument structure, all
the structure codes are copied to the
stack.
A 6-byte area for saving the structure
codes is prepared on the stack.
An 11-byte code is required for 
copying the structure to the stack.

NO SECTION-NAME SIZE ATTRIBUTES

0 CONST . . . . . . . . . . . . . 000009 CONST REL ALIGN=2

1 CODE . . . . . . . . . . . . . . 000057 CODE REL ALIGN=1

#define FIRST 20
#define SECOND 40

struct list{
int data1;
int data2;
char *msg;

};

func_main(void)
{

int a;
struct list code;

code.data1=FIRST;
code.data2=SECOND;
code.msg="Hello !!";

a=func_sub2(code);
}

int func_sub2(struct list str_data)
{

int total;
char *c;
char mojiretu[10];

total = str_data.data1 + str_data.data2;
c = mojiretu;
while(*str_data.msg){
*c++ = *str_data.msg++;

}
return(total);

}

;;;; total = str_data.data1 + str_data.data2;

MOVW A, @RW3+4

ADDW A, @RW3+6

MOVW @RW3+-4, A

;;;; c = mojiretu;

MOVEA A, @RW3+-14

MOVW @RW3+-2, A

;;;; while(*str_data.msg){

L_27:

;;;; while(*str_data.msg){

MOVW A, @RW3+8

MOV A, DTB:@A
BEQ L_26

;;;; *c++ = *str_data.msg++;

MOVW A, @RW3+-2

MOVW RW0, A

MOVN A, #1

ADDW A

MOVW @RW3+-2, A

MOVW A, @RW3+8

MOVW RW1, A

MOVN A, #1

ADDW A

MOVW @RW3+8, A

MOV A, @RW1

MOV @RW0, A

;;;; a=func_sub2(code);

ADDSP #-6

MOVW A, SP

MOVEA A, @RW3+-8

MOVW RW0, #6

MOVSI SPB, SPB

CALL _func_sub2

ADDSP #6
MOVW @RW3+-2, A

The structure elements
that were copied to the 
stack are referenced.
60



8.1  Passing Arguments During Function Calls
8.1.3 Structure Address Passing

In structure address passing, only the structure address is stored on the stack before 
calling the function.

■ Structure Address Passing

Figure 8.1-4 "Structure Address Passing" shows an example of structure address passing.

In this example, a 2-byte area for arguments is allocated on the stack.  The code for copying the
arguments consists of four bytes, which is much smaller than the normal argument passing and
argument structure passing.

A 26-byte stack area is required for processing from calling function func_sub3( ) to its
execution.  (See (3), "Structure address passing," in Figure 8.1-5 "Stack Usage Size Depending
on Argument Type during Function Calls".)

Specifying a structure address as an argument is the most efficient method in terms of
conserving the area for arguments to be used.

Figure 8.1-4  Structure Address Passing

To pass the address of the structure code that was 
defined using the function func_main( ), the address 
of the structure code is copied to the stack. 
A 2-byte address area is allocated on the stack. 
A 3-byte code is required for copying the structure 

#define FIRST 20
#define SECOND 40

struct list{
int data1;
int data2;
char *msg;

};

func_main(void)
{

int a;
struct list code;

code.data1=FIRST;
code.data2=SECOND;
code.msg="Hello !!";

a=func_sub3(&code);
}

int func_sub3(struct list *poi_data)
{

int total;
char *c, *d;
char mojiretu[10];

total = poi_data->data1 + poi_data->data2;
c = mojiretu;
d = poi_data->msg;
while(*d){

*c++ = *d++;
}
return(total);

}

;;;; a=func_sub3(&code);

MOVEA A, @RW3+-8

PUSHW A

CALL _func_sub3

POPW AH

MOVW @RW3+-2, A

;;;; total = poi_data->data1 + poi_data->data2;

MOVW RW0, @RW3+4

MOVW A, @RW0

ADDW A, @RW0+2
MOVW @RW3+-6, A

;;; d = poi_data->msg;
MOVW RW0, @RW3+4
MOVW A, @RW0+4
MOVW @RW3+-2, A

;;;; while(*d){
L_27:
;;;; while(*d){

MOVW A, @RW3+-2
MOV A, DTB:@A
BEQ L_26

;;;; *c++ = *d++;
MOVW A, @RW3+-4
MOVW RW0, A
MOVN A, #1
ADDW A
MOVW @RW3+-4, A
MOVW A, @RW3+-2
MOVW RW1, A
MOVN A, #1
ADDW A
MOVW @RW3+-2, A
MOV A, @RW1
MOV @RW0, A

NO SECTION-NAME SIZE ATTRIBUTES

0 CONST . . . . . . . . . . . . . 000009 CONST REL ALIGN=2
1 CODE . . . . . . . . . . . . . . 000055 CODE REL ALIGN=1

The value of element msg of the structure code that 
was defined using the function func_main( ) is 
assigned to local variable d.

The values of elements data1 and data2 
of the structure code that was defined 
using the function func_main( ) are 
accessed directly.
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CHAPTER 8  REDUCING ARGUMENTS TO CONSERVE STACK AREA
8.1.4 Stack Status During Function Calls

This section describes the status of the stack for function calls as explained in 
Sections 8.1.1 "Normal Argument Transfer", 8.1.2 "Argument Structure Passing", and 
8.1.3 "Structure Address Passing".

■ Stack Status at Function Call

Figure 8.1-5 "Stack Usage Size Depending on Argument Type during Function Calls" shows the
status of the stack used for function calls explained in Sections 8.1.1 "Normal Argument
Transfer", 8.1.2 "Argument Structure Passing", and 8.1.3 "Structure Address Passing".  This
figure shows the relationship between reducing the arguments and conserving the stack area
when calling a function.

In these examples, the stack size used does not differ much because only three arguments
were passed.  However, when, for example, ten 4-byte arguments are to be passed, the stack
sizes may differ considerably.

Therefore, when many arguments are to be passed during a function call, the most efficient
method is to use a structure argument and to pass only its address.

Figure 8.1-5  Stack Usage Size Depending on Argument Type during Function Calls
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8.2  Conditions for Structure Address Transfer
8.2 Conditions for Structure Address Transfer

This section describes the conditions that must be satisfied to pass a structure 
address as a function argument.

■ Conditions for Passing Structure Addresses

As explained in Section 8.1 "Passing Arguments During Function Calls", when a large number
of arguments is to be passed, it is most efficient in terms of stack use to define the arguments in
a structure and to pass only the address of that structure..  However, the following conditions
must be satisfied to pass the address of such a structure.

Figure 8.2-1  Structure Passing and Structure Address Passing

In argument structure passing (see Section 8.1.2 "Argument Structure Passing"), each element
of the structure is copied to the stack and then passed to the respective function.  Therefore,
even if the value in an element of the structure is changed, the value of the structure in the
calling source does not change.  However, in the structure address transfer (see Section 8.1.3
"Structure Address Passing"), the structure is directly accessed for processing.  Therefore, if the
value of an element of the structure is changed, the structure value that was held before the
function call will be lost.  In the example of structure address passing in Section 8.1.3 "Structure
Address Passing", loss of the information for structure code element msg was avoided by
adding the local variable d was added to the function func_sub3( ) so that the value could be
assigned to the variable d before being used.

When the value in the calling source must be kept unchanged during structure address passing,
the receiving function must operate in the way described above..  In the example of structure
address passing explained in Section 8.1.3 "Structure Address Passing", the stacking efficiency
is highest even though this type of processing is performed.
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The structure code that was defined
using the function func_main( ) is
copied to the argument area.

Because the function func_sub3( )
accesses this area, the original
structure code is not affected
even if element values are 
overwritten.

Because the function func_sub2( ) 
accesses this area, the original 
structure code is not affected even 
if element values are overwritten.
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CHAPTER 8  REDUCING ARGUMENTS TO CONSERVE STACK AREA
[Tip]

Softune C Checker:

The Softune C Checker will output a warning if some arguments were not referenced at all
by the called function.  Also, if a structure or union was specified in an argument, a warning
message is output to the effect that performance may be reduced.  Examine the method of
argument passing considering the contents of these warning messages.
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CHAPTER 9 CONSERVING STACK AREA BY 
IMPROVEMENTS ON THE AREA FOR 
FUNCTION RETURN VALUES

This chapter describes how to conserve stack area by improvements on the function 
return value area.
As already described, the number of function calls and the number of arguments 
required for function calls can be reduced by using inline expansion.  The size of stack 
used can also be reduced by improvements with respect to the return values of a 
function.  This chapter describes this third method of stack conservation, reducing the 
size of the function return value area.

9.1  "Return Value of Functions"

9.2  "Functions Returning Structure-type Values and Stack Conservation"

9.3  "Functions Returning Union-type Values and Stack Conservation"
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CHAPTER 9  CONSERVING STACK AREA BY IMPROVEMENTS ON THE AREA FOR FUNCTION RETURN VALUES
9.1 Return Value of Functions

This section describes the return values of functions.
The type of a function is the type of the value returned when the function terminates.  
The type of this return value determines whether the return value is to be returned to 
the register or stack.

■ Return Value of Functions

The return value of functions have the same type as ordinary variables.  When defining a
function, the type of the return value for the function must be specified.  Table 9.1-1 "Function
Return Values and Return Value Interface" lists the relationship between function return values
and the interface for return values.

Table 9.1-1  Function Return Values and Return Value Interface

Type of return value Allocated size (bytes) Return value interface

void --- ---

char 1 AL

signed char 1 AL

unsigned char 1 AL

short 2 AL

unsigned short 2 AL

int 2 AL

unsigned int 2 AL

long 4 A

unsigned long 4 A

float 4 A

double 8 On stack

long double 8 On stack

near Pointer/address 2 AL

for Pointer/address 2 A
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9.1  Return Value of Functions
■ Function Return Values Returned via the AL Register

The fcc907 places return values of up to two bytes into the AL register and then returns these
values to the calling function.  When the value to be returned by a function is of the type "char"

(1 byte), "short" (2 bytes), or "int" (2 bytes), the value is stored in the AL register of the F2MC-16
family as shown in Figure 9.1-1 "Returning Function Return Values Using the AL Register" and
then returned to the function caller.  Therefore, when such a function is to be called, the return
address save area or return value area shown in Figure 6.1-1 "Areas Allocated on the Stack
When a Function Is Called" is not required.

Figure 9.1-1  Returning Function Return Values Using the AL Register

AL

AL

AL
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■ Function Return Values Returned via the A Register

The fcc907 places 4-byte return values into the A register and then returns these values to the
calling function.  When the value to be returned by a function is a "long" (4 bytes) or "float" (4

bytes) type, the value is stored in the A register of the F2MC-16 Family as shown in Figure 9.1-2
"Returning Function Return Values Using the A Register" and then returned to the function
caller.  Therefore, when such a function is to be called, the return value address save area or
return value area shown in Figure 6.1-1  "Areas Allocated on the Stack When a Function Is
Called" is not required.

Figure 9.1-2  Returning Function Return Values Using the A Register

long func_long(void)

{

long a;

return(a);
}

A

int data = 0xfff;

long func_long(void);

float func_float(void);

void main(void)

{

long long_data;

float float_data;

long_data = func_long( );

float_data = func_float( );

}

A

float func_float(void)

{

float a;

return(a);
}

;;;; return(a);

MOVL A, @RW3+-4

;;;; return(a);

MOVL A, @RW3+-4
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■ Returning Function Return Value via the Stack

When a function does not place a return value into the AL register (2 bytes) or A register (4
bytes), the return value is returned via the stack.  In this case, the return address save area and
return value area shown in Figure 6.1-1 "Areas Allocated on the Stack when a Function is
Called" are allocated.

Some functions return values of other types such as double (8 bytes).  Such functions return
values via stack areas as shown in Figure 9.1-3 "Returning Function Return Values via Stack
Areas".

Figure 9.1-3  Returning Function Return Values via Stack Areas

MOVL @RW4, A

Return
value
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CHAPTER 9  CONSERVING STACK AREA BY IMPROVEMENTS ON THE AREA FOR FUNCTION RETURN VALUES
■ Functions Returning Pointer-Type Values

Some functions have "pointer" type return values.  The size of the pointer handled by the fcc907
depends on the memory model specified at compilation and the _ _near-type or _ _far-type
qualifier specification.

Figure 9.1-4  Functions Returning a Return Value of the Type "pointer"

Table 9.1-2 "Memory Models and Addressing at Access" shows the relationship between
memory models and addressing.

When a small model is used for compilation or when the pointer has been clearly qualified using
the _ _near type, the size of the pointer will be two bytes.  As a result, the pointer will be
returned to the AL register.  When a large model is used for compilation or when the pointer has
been clearly qualified using the _ _far type, the pointer will be four bytes.  As a result, the
pointer will be returned to the A register.  For a medium model, the pointer will be returned to
the A register (4 bytes) when a function address is returned or to the AL register (2 bytes) when
a variable address is returned.  For a compact model, the pointer will be returned to the AL
register (2 bytes) when a function address is returned or to the A register (4 bytes) when a
variable address is returned.  These functions can be summarized as follows:

❍ Pointer returned to the AL register (2 bytes)

_ _near-type qualified pointer

Variable/function access when a small model is used for compilation

Variable access when a medium model is used for compilation

Function access when a compact model is used for compilation

A

When a small model is used for 
compilation, the address (2 bytes) 
of a char-type variable is returned 
to the A register.

When a large model is used for 
compilation, the address (4 bytes) 
of a char-type variable is returned 
to the A register.

Table 9.1-2  Memory Models and Addressing at Access

Small model Medium model Compact model Large model

Function 
access

16-bit addressing 24-bit addressing 16-bit addressing 24-bit addressing

Variable 
access

16-bit addressing 24-bit addressing
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9.1  Return Value of Functions
❍ Pointer returned to the A register (4 bytes)

_ _far-type qualified pointer

Variable/function access when a large model is used for compilation

Function access when a medium model is used for compilation

Variable access when a compact model is used for compilation

■ Functions Returning Structure-Type Values

Some functions have return values of the type "structure."  The size of the structure to be
returned depends on the members defined in the structure.  When a function is called that
returns a structure, the function places a structure-type return value on the stack as shown in
Figure 9.1-5 "Functions Returning a Return Value of the Type "structure"".  For details of calling
functions that return a structure, see Section 9.2 "Functions Returning Structure-type Values
and Stack Conservation."

Figure 9.1-5  Functions Returning a Return Value of the Type "structure"

A struct-type return value is returned to the area allocated on the stack.

struct s_data func_struct(void)

{

data_struct.id = 0x10;

data_struct.before = 0x09;

data_struct.after = 0x11;

return(data_struct);

}

struct s_data{

int id;

int before;

int after;

}data_struct;

void main(void)

{

struct s_data func_struct(void);

struct s_data local_struct;

local_struct = func_struct( );

}
;;; return(data_struct);

MOVW A, SP

MOVW A, DTB:@A

MOVW A, #_data_struct

MOVW RW0, #6

MOVSI SPB, DTB

Return
value
71



CHAPTER 9  CONSERVING STACK AREA BY IMPROVEMENTS ON THE AREA FOR FUNCTION RETURN VALUES
■ Functions Returning Union-Type Values

Some functions return a union.  The size of union to be returned depends on the members
defined in the union, in the same way as for the above discussed functions with a structure-type
return value.  When a function that returns a union is called, the function places a union-type
return value on the stack as shown in Figure 9.1-6 "Functions Returning a Return Value of the
Type "union"".  For details of function calls to functions that return a union, see Section 9.3
"Functions Returning Union-type Values and Stack Conservation."

Figure 9.1-6  Functions Returning a Return Value of the Type "union"

A union-type return value is returned to the area allocated on the stack.

union u_data{

short short_id;

long long_id;

}data_union;

void main(void)

{

union u_data func_union(void);

union u_data local_union;

local_union = func_union( );

}

union u_data func_union(void)
{

data_union.short_id = 0x10;

return(data_union);

}

;;;; return(data_union);

MOVW A, SP

MOVW A, DTB:@A

MOVW A, #_data_union
MOVW RW0, #4

MOVSI SPB, DTB

Return
value
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9.2 Functions Returning Structure-type Values and Stack 
Conservation

This section describes improvements with respect to the return values for a function 
that returns a value of the type "structure."
When a function is called that returns a value of the type "structure", the return value 
is not placed into an register but is stored on the stack.  The larger the structure-type 
return value, the larger the stack area used.

■ Calling a Function Returning a Structure-type Value

Figure 9.2-1 "Calling a Function That Returns a Structure" and Figure 9.2-2 "Stack Status for
Calling Functions That Return a Structure" show an example of a function that has a return
value of the type "structure."  In this example, the function main( ) calls a function of the type
s_data.  To call the function func_struct( ) that returns a value of the type "structure", the
following operations are necessary:

1. The calling function main( ) loads the start address of the area to which the func_struct( ) will
output its return value into the A register before calling the function func_struct( ).  (See
Figure 9.2-1 "Calling a Function that Returns a Structure".)

2. The called function func_struct( ) saves the value of the A register to the stack before
starting with function processing.  (See Figure 9.2-2 "Stack Status for Calling Functions That
Return a Structure".)

3. When function processing terminates, the return value of the type "structure" is passed to the
calling function main( ) based on the beginning address of the area for saving the return
values from the function.  (See Figure 9.2-2 "Stack Status for Calling Functions That Return
a Structure".)

4. The calling function main( ) copies the return value from the stack to a local variable.  (See
Figure 9.2-1 "Calling a Function That Returns a Structure".)

Figure 9.2-1  Calling a Function That Returns a Structure

To call a function that returns a structure, the area for saving the structure-type return value
must be prepared as well as the argument to be passed to the function and the local variables

The return value that was passed from
function func_struct( ) is copied from the stack
area to the variable area so that the return value
is assigned to the local variable local_struct.

The beginning address of the area to which the
structure-type return values from the function
func_struct( ) are to be stored is stored in the A
register before calling the function.
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CHAPTER 9  CONSERVING STACK AREA BY IMPROVEMENTS ON THE AREA FOR FUNCTION RETURN VALUES
of the called function.  The larger the returned structure, the larger the stack size used.  In this
example, the return value that is saved on the stack is copied to structure local_struct because
the structure that was returned from the function func_struct( ) is assigned to the structure
local_struct of the local variable.

Figure 9.2-2  Stack Status for Calling Functions That Return a Structure

A
RW3

RW3-6

RW3-12

IX

SP

SP

8 bytes

When the function func_struct( ) is called, the A register value 
(leading address of the area used to store the return value returned 
by the function func_struct( )) is saved on the stack.

Address of the 
area for returning 
the return value

Return address
Previous RW3

Area for returning
the return value of

the function
func_struct( )

Local variable 
local_struct of 
the function 

main( )
Return address
Previous RW3

Previous RW0

SP position 
when  calling
the  function
main( )

SP position when calling 
the function func_struct( ) 

The return value is returned based 
on the leading address of the area 
used to return the return value of 
the function copied on the stack.

struct s_data func_struct(void)

{

data_struct.id = 0x10;

data_struct.before = 0x09;

data_struct.after = 0x11;

return(data_struct);

}

.GLOBAL _func_struct

_func_struct:

LINK #0

PUSHW (RW0)

PUSHW A

;;;; {

;;;; data_struct.id = 0x10;

MOV A, #16

MOVW _data_struct, A

;;;; data_struct.before = 0x09;
MOVN A, #9

MOVW _data_struct+2, A

;;;; data_struct.after = 0x11;

MOV A, #17

MOVW _data_struct+4, A

;;;; return(data_struct);

MOVW A, SP

MOVW A, DTB:@A

MOVW A, #_data_struct

MOVW RW0, #6
MOVSI SPB, DTB

;;;; }

POPW A

POPW (RW0)
UNLINK

RET

.END
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■ Calling a Function Passing the Address of the Structure Variable to which the Return Value is to be 
Passed

In the function processing shown in Figure 9.2-1 "Calling a Function That Returns a Structure"
and Figure 9.2-2 "Stack Status for Calling Functions That Return a Structure", the structure that
was returned from function func_struct( ) is assigned to the local structure variable local_struct.
Therefore, the return value is copied from the stack to the structure local_struct.

In this case, the function should be defined in such a way that the function passes the address
of the structure variable to which the return value is to be passed.  This reduces the size of the
stack used.

Figure 9.2-3 "Passing the Structure Address to the Function" and Figure 9.2-4 "Stack Status
When Calling a Function That Passes a Return Value to a Specified Structure" show how the
call to the function returning a structure was improved by changing the function call shown in
Figure 9.2-1 "Calling a Function That Returns a Structure" and Figure 9.2-2 "Stack Status for
Calling Functions That Return a Structure".  The function func_struct_addr( ) is called as
follows:

1. The address of the structure local_struct is stored as argument on the stack before calling
the function func_struct_addr( ).  (See Figure 9.2-3 "Passing the Structure Address to the
Function".)

2. The called function func_struct_addr( ) directly writes a value to the local variable
local_struct of the function main( ) in accordance with the address stored on the stack.  (See
Figure 9.2-4 "Stack Status When Calling a Function that Passes a Return Value to a
Specified Structure".)

Figure 9.2-3  Passing the Structure Address to the Function

The beginning address of the area for storing
return values from the function
func_struct_addr( ) is stored on the stack
before calling the function.
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Figure 9.2-4  Stack Status When Calling a Function That Passes a Return Value to a Specified Structure

RW+4

RW-6

RW3

SP

SP

Local variable 
local_struct of 
the function 

main( )

Return address

Return address

Previous RW3

Previous RW3
Previous RW0

Local variable
local_struct of
function main( )

8 bytes

SP position when calling 
the function func_struct( ) 

void func_struct_addr(struct s_data *ans)

{

ans->id = 0x10;

ans->before = 0x09;

ans->after = 0x11;

return;

}

;-------begin_of_function

.GLOBAL _func_struct_addr

_func_struct_addr:

LINK #0

PUSHW (RW0)
;;;; {

;;;; ans->id = 0x10;

MOV A, #16

MOVW A, @RW3+4

MOVW DTB:@AL, AH

;;;; ans->before = 0x09;

MOVW RW0, @RW3+4

MOVN A, #9

MOVW @RW0+2, A

;;;; ans->after = 0x11;

MOVW RW0, @RW3+4

MOV A, #17

MOVW @RW0+4, A

;;;; return;

;;;; }

POPW (RW0)

UNLINK

RET

.END

The return value is directly passed
to the local variable local_struct of
the function main( ) in accordance
with the address saved on the stack.
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9.3 Functions Returning Union-type Values and Stack 
Conservation

This section describes improvements with respect to the return values for a function 
that returns a value of the type "union."
When a function that returns a value of the type "union" is called, the return value is 
not placed into registers but is stored on the stack.  The larger the value of the 
returned union, the larger the stack area used.

■ Calling a Function Returning a Union-Type Value

Figure 9.3-1 "Calling a Function That Returns a Union" and Figure 9.3-2 "Stack Status When
Calling a Function That Returns a Union" show an example for a function that returns a value of
the type "union."  In this example, the function main( ) calls a function of the type "u_data."
Calling the function func_union( ) that returns a value of the type "union" requires the following
operations:

1. The calling function main( ) loads the start address of the area to which the function
func_union( ) will return a value into the A register before calling the function func_union( ).
(See Figure 9.3-1 "Calling a Function That Returns a Union".)

2. The called function func_union( ) saves the value of the A register to the stack before
starting with function processing.  (See Figure 9.3-2 "Stack Status When Calling a Function
That Returns a Union".)

3. When function processing terminates, the return value of the type "union" is passed to the
calling function main( ) based on the start address of the area for storing the return values
from the function.   (See Figure 9.3-2 "Stack Status When Calling a Function That Returns a
Union".)

4. The calling function main( ) copies the return value from the stack to the local variable.  (See
Figure 9.3-2 "Stack Status When Calling a Function That Returns a Union".)

Figure 9.3-1  Calling a Function That Returns a Union

For calling a function that returns a union, the area for saving the union-type return value must

The return value that passed from the function func_union ( ) is copied
from the stack area to the variable area so that the return value is 
assigned to the local variable local_union.

The beginning address of the area in which the
union_type return value from function func_union ( )
is to be stored is stored in the A register before
calling the function.
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be prepared as well as the argument to be passed to the function and the local variables of the
called function.  The larger the returned union, the larger the stack size used.  In this example,
because the union that was returned from function func_union( ) is assigned to the union
local_union of the local variable, the return value that is saved on the stack is copied to the
union local_union.

Figure 9.3-2  Stack Status When Calling a Function That Returns a Union

■ Calling a Function Passing the Address of a Union Variable to Which the Return Values Are to Be 
Passed

In the function processing shown in Figure 9.3-1 "Calling a Function That Returns a Union" and
Figure 9.3-2 "Stack Status When Calling a Function That Returns a Union", the union that was
returned from function func_union( ) is assigned to a local variable union local_union.
Therefore, the return value is copied from the stack to the union local_union.

In this case, the function should be defined in such a way that the function passes the address
of the union variable to which the return value is to be passed.  This reduces the size of stack
used.

Figure 9.3-3 "Passing the Union Address to a Function" and Figure 9.3-4 "Stack Status When
Calling a Function That Passes a Return Value to the Specified Union" show how the call to the
function returning the union was improved by changing the function call shown in Figure 9.3-1
"Calling a Function That Returns a Union" and Figure 9.3-2 "Stack Status When Calling a
Function That Returns a Union".  The function func_union_addr( ) is called as follows:

1. The address of the union local_union is stored as argument on the stack before calling the
function func_union_addr( ).  (See Figure 9.3-3 "Passing the Union Address to a Function".)

2. The called function func_union_addr( ) directly writes a value to the local variable
local_union of function main( ) in accordance with the address stored on the stack.  (See
Figure 9.3-4 "Stack Status When Calling a Function That Passes a Return Value to the
Specified Union".)

A

RW3

RW3-4

RW3-8

RW3

SP

SP

When the function func_union( ) is called, the 
A register value (leading address of the area 
used to store the return value returned by the 
function func_union( )) is saved on the stack.

Address of the
area for returning 
the return value

Return address

Return address

Previous RW3

Previous RW3
Previous RW0

Area for returning
the return value
of the function
func_union( )

Local variable
local_union of
the function

main( ) 

8 bytes

SP position 
when calling 
the function 
main( )

SP position when 
calling the function 
func_union( ) 

union u_data func_union(void)

{

data_union.long_id = 0xff;

return(data_union);

}

;-------begin_of_function

.GLOBAL _func_union

_func_union:

LINK #0

PUSHW (RW0)

PUSHW A

;;;; {

;;;; data_union.long_id = 0xff;

MOV A, #255

ZEXTW

MOVL _data_union, A

;;;; return(data_union);

MOVW A, SP

MOVW A, DTB:@A

MOVW A, #_data_union

MOVW RW0, #4
MOVSI SPB, DTB

;;;; }

POPW A

POPW (RW0)

UNLINK

RET

.END

The return value is returned 
based on the leading address
of the area used to return the 
return value of the function 
copied on the stack.
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Figure 9.3-3  Passing the Union Address to a Function

Figure 9.3-4  Stack Status When Calling a Function That Passes a Return Value to the Specified Union

The start address of the area for storing the return
value from function func_union_addr( ) is stored on
the stack before calling the function.

RW3

RW3-4

RW3

SP

SP

RW3+4

The return value is directly returned 
to the local variable local_union of 
the function main() based on the 
address saved on the stack.

Return address
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function main( )
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function main( ) 

SP position when calling
the function func_union( ) 

6 bytes
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PART III USING LANGUAGE EXTENSIONS

Part III describes the fcc907 language extensions.

The fcc907 supports specifications for using the F 2MC-16 family architecture.  These 
specifications are referred to as the language extensions.  Part 3 begins with an 
overview of the language extensions.  It then provides notes on including assembler 
code in a C program and on the specification and placement of the _ _io area and 
_ _direct type qualifier.  This part also provides notes on creating and registering 
interrupt functions.

CHAPTER 10  "WHAT ARE LANGUAGE EXTENSIONS?"

CHAPTER 11  "NOTES ON ASSEMBLER PROGRAM IN C PROGRAMS"

CHAPTER 12  "NOTES ON DEFINING AND ACCESSING THE I/O AREA"

CHAPTER 13  "MAPPING VARIABLES QUALIFIED WITH THE _ _direct TYPE 
QUALIFIER"

CHAPTER 14  "CREATING AND REGISTERING INTERRUPT FUNCTIONS"
81



  
82



CHAPTER 10 WHAT ARE LANGUAGE EXTENSIONS?

The fcc907 provides the following functionality through language extensions:
• Coding of Assembler instructions using an _ _asm statement
• Extended type qualifiers
• Extended functions using #pragma
• Interrupt-related built-in functions
• Other built-in functions
This chapter describes these functions.

10.1  "Coding Assembler Instructions Using an _ _asm Statement"

10.2  "Extended Type Qualifiers"

10.3  "Extended Functions Using #pragma"

10.4  "Interrupt-Related Built-in Functions"

10.5  "Other Built-in Functions"
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10.1 Coding Assembler Instructions Using an _ _asm Statement

This section briefly describes how to include Assembler instruction into a C program 
using an _ _asm statement.
The _ _asm statement is used to include an Assembler instruction into a C program.

■ Coding Assembler Instructions Using an _ _asm Statement

The _ _asm statement is used to include an Assembler instruction into a C program.  Write the
_ _asm statement as follows:

C programs cannot directly set the values of CPU registers.  Moreover, some operations of C
programs cannot be executed fast enough.  To execute such operations, you can use an  _
_asm statement to include instead an Assembler instruction into the C program.

The fcc907 uses the _ _asm statement for coding Assembler instructions both inside a function
or outside functions.

Figure 10.1-1  Function in Which _ _asm Statement Is Used

Figure 10.1-1 "Function in Which _ _asm Statement Is Used" shows an example for the coding
of an _ _asm statement.  When an _ _asm statement is included, an Assembler instruction is
expanded at the location of the statement is included in the text.

See CHAPTER 11 "NOTES ON ASSEMBLER PROGRAMS IN C PROGRAMS" for information
about including assembler code using the _ _asm statement.

_ _asm ("Assembler instruction");

The assembler executes the code assuming that the
character string coded starting in column 2 is an
instruction.  A tab code or null character string must
be included at the beginning of the character string.

void main(void)

{

int flag = 0x01;

int i;

_ _asm(" MOVN A, #0");

_ _asm(" MOVW @RW3+-2, A");
_ _asm("L_24:");

_ _asm(" MOVW A, @RW3+-2");

_ _asm(" CMPW A, #100");

_ _asm(" BGE L_23");

_ _asm(" INCW @RW3+-2");

_ _asm(" BRA L_24");

_ _asm("L_23:");

}

.PROGRAM asm1

.LIBRARY "lib907s.lib"

.SECTION CODE, CODE, ALIGN=1
;-------begin_of_function

.GLOBAL _main
_main:

LINK #4
MOVN A, #1
MOVW @RW3+-2, A
MOVN A, #0
MOVW @RW3+-2, A

L_24:
MOVW A, @RW3+-2
CMPW A, #100
BGE L_23
INCW @RW3+-2
BRA L_24

L_23:

UNLINK
RET
.END
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10.2 Extended Type Qualifiers

This section describes the extended type qualifier, which is one of the language 
extensions.
The fcc907 provides the following six extended type qualifiers in addition to the 
ordinary type qualifiers (const and volatile):
• _ _near type qualifier
• _ _far type qualifier
• _ _io type qualifier
• _ _direct type qualifier
• _ _interrupt type qualifier
• _ _nosavereg type qualifier

These six type qualifiers are dependent on the F 2MC-16 family architecture.

■ Extended Type Qualifiers

The fcc907 provides the following extended type qualifiers:

Sections 10.2.1 "_ _ near Type Qualifier and _ _far type Qualifier" to 10.2.5 "_ _nosavereg Type
Qualifier" briefly describe the functions of the above type qualifiers and provide notes on their
use.

Qualifiers specific to the 
fcc907

_ _ near type qualifier
_ _ far type qualifier
_ _ io type qualifier
_ _ direct type qualifier
_ _ interrupt type qualifier
_ _ nosavereg type qualifier
85



CHAPTER 10  WHAT ARE LANGUAGE EXTENSIONS?
10.2.1 _ _near Type Qualifier and _ _far Type Qualifier

This section describes the _ _near type qualifier and _ _far type qualifier of the fcc907 
type qualifiers.  These type qualifiers can be specified for variables and functions.  The 
_ _near-type qualified variables and functions are accessed using 16-bit addressing.  
The _ _far-type qualified variables and functions are accessed using 24-bit addressing.

■ Specifications of the _ _near type qualifier and _ _far type qualifier

The _ _near type qualifier can be specified for variables and functions.  The _ _near-type
qualified variables and functions are accessed using 16-bit addressing regardless of the
memory model specified at compilation.  In addition, the _ _far-type qualified variables and
functions are accessed using 24-bit addressing.

Figure 10.2-1  Specification of the _ _near-type Qualifier (for a Large Model)

Figure 10.2-1 "Specification of the _ _near-type Qualifier (for a Large Model)" shows an
example of compiling a program that includes _ _near-type qualified variables and functions for
a large model.  In this example, _ _near type qualification has been performed for the function
near_pro( ) and int-type array n_test[ ].  For compilation using a large model, the variables and
functions are accessed using 24-bit addressing.  The _ _near-type qualified function  near_pro(
), however, is called using 16-bit addressing.  In addition, the element n_test[3] of the _ _near-
type qualified array is accessed using 16-bit addressing.

Bit

extern void _ _near near_pro(void);

extern void pro(void);

_ _near int n_test[4] = {1,2,3,4};

int test[4] = {1,2,3,4};

void main(void)
{

int m_data = 0;

near_pro();

pro();

m_data = n_test[3];

m_data = test[3];
}

.SECTION CODE_near, CODE, ALIGN=1

;-------begin_of_function

.GLOBAL _main

_main:

LINK #2

;;;; {

;;;; int m_data = 0;

MOVN A, #0

MOVW @RW3+-2, A

;;;; near_pro();

CALL _near_pro

;;;; pro();

CALLP _pro

;;;; m_data = n_test[3];

MOVW A, _n_test+6

MOVW @RW3+-2, A

;;;; m_data = test[3];

MOV A, #bnksym _test

MOV ADB, A

MOVW A, ADB:_test+6

MOVW @RW3+-2, A

;;;; }

UNLINK

RETP

.END

Specification 
of the _ _near 
type modifier

Specification
of the _ _near
type modifier

Compile
-model large

Access using 
16-bit addressing
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Figure 10.2-2  Specification of the _ _far-type Qualifier (for a Small Model)

Figure 10.2-2 "Specification of the _ _far-type Qualifier (for a Small Model)" shows an example
of compiling a program that includes _ _far-type qualified variables and functions for a small
model.  In this example, _ _far type qualification has been performed for the function far_pro( )
and int-type array f_test[ ].  For compilation using a small model, the variables and functions are
accessed using 16-bit addressing.  The _ _far-type qualified function far_pro( ), however, is
called using 24-bit addressing.  In addition, the element f_test[4] of the _ _far-type qualified
array is accessed using 24-bit addressing.

As described above, the _ _near-type qualified variables and functions are accessed using 16-
bit addressing regardless of the memory model specified at compilation.  In the same way, the
_ _far-type qualified variables and functions are accessed using 24-bit addressing regardless of
the memory model specified at compilation.

<Notes>

The _ _near type qualifier and _ _far-type qualifier cannot be specified for local variables.

extern void _ _far far_pro(void);

extern void pro(void);

_ _far int f_test[4] = {1,2,3,4};

int test[4] = {1,2,3,4};

void main(void)
{

int m_data = 0;

far_pro();

pro();

m_data = f_test[3];

m_data = test[3];
}

.SECTION CODE, CODE, ALIGN=1
;-------begin_of_function

.GLOBAL _main
_main:

LINK #2
;;;;  {
;;;; int m_data = 0;

MOVN A, #0
MOVW @RW3+-2, A

;;;; far_pro();
CALLP _far_pro

;;;; pro();
CALL _pro

;;;; m_data = f_test[3];
MOV A, #bnksym _f_test
MOV ADB, A
MOVW A, ADB:_f_test+6
MOVW @RW3+-2, A

;;;; m_data = test[3];
MOVW A, _test+6
MOVW @RW3+-2, A

;;;;  }
UNLINK
RET
.END

Compile
-model small

Specification 
of the _ _far 
type modifier

Specification
of the _ _far
type modifier

Access using 
24-bit 
addressing
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10.2.2 _ _io Type Qualifier

This section describes the _ _io type qualifier, which is an fcc907 extended type 
qualifier.  The _ _io type qualifier is specified for a variable mapped into the I/O area.

■ Variables with _ _io Type Qualifier

The _ _io type qualifier is one of the type qualifiers specific to the fcc907.In the fcc907, the _ _io
type qualifier is specified for a variable mapped into the I/O area (addresses h’0000’ to h’00ff’).
A variable qualified by the _ _io type qualifier is accessed via I/O addressing.  In I/O addressing,
the addresses h’0000’ to h’00ff’ can be accessed.  In I/O addressing, the user specifies only the
lower 8 bits of the address to be accessed because the high-order byte of the address is
automatically assumed to be h’00’.  This format allows to express a memory address in one
byte.  Because machine instructions using I/O addressing are generated when a variable
qualified by the _ _io type qualifier is accessed, the generated code is smaller than the code
generated for accessing a variable via normal addressing.

See CHAPTER 12  "NOTES ON DEFINING AND ACCESSING THE I/O AREA" for information
about mapping variables into the I/O area.

Figure 10.2-3  _ _io Type Qualifier Specification and Access

Figure 10.2-3 "_ _io Type Qualifier Specification and Access" shows an example of _ _io type
qualifier specification and access. 

In this example, the _ _io type qualifier is specified when variable IO_PDR0 is defined.  This
variable is accessed using I/O addressing.

When external variable a is accessed, code using 16-bit addressing is generated.  When a
machine instructions are generated using I/O addressing when a variable qualified by the _ _io

A variable qualified by the __io-type qualifier is accessed 
using exclusive instructions for accessing I/O area.

1 _ _io unsigned char IO_PDR0;
2

3 unsigned char a;

4

5 void func_io(void)

6 {

7 IO_PDR0 = 0x10;

8

9 a = 0x10;
10 }

DA 000000 -----------<DATA>------------ 9 .SECTION DATA, DATA, ALIGN=2

10 .GLOBAL _a

DA 000000 11 _a:

DA 000000 [1]B 12 .RES.B 1

13

CO 000000 -----------<CODE>------------ 14 .SECTION CODE, CODE, ALIGN=1

15 ;-------begin_of_function

16 .GLOBAL _func_io

CO 000000 17 _func_io:

CO 000000 0800 18 LINK #0

CO 000002 540010 R 19 MOV I:_IO_PDR0, #16

CO 000005 71DF000010 R 20 MOV _a, #16

CO 00000A 09 21 UNLINK

CO 00000B 67 22 RET

== 23 .END

Specification of 
the __io type 
qualifier
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type qualifier is accessed, the generated code uses I/O addressing and is therefore smaller than
the code generated for variable access using normal addressing.

<Notes>

When defining variables with the _ _io type qualifier specified, variable areas are allocated in
the order defined.  A variable such as a dummy must be defined for those locations where a
variable is not defined. 

[Tip]

Softune C Checker:

The Softune C Checker outputs a warning if the _ _io type qualifier, a language extension, is
used in a definition and declaration.  This check function is useful for creating programs for
which portability is important.
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10.2.3 _ _direct Type Qualifier

This section describes the _ _direct type qualifier, which is an fcc907 extended type 
qualifier.  The _ _direct type qualifier is specified for variables mapped into the direct 
area.

■ Variables with _ _direct Type Qualifier

The _ _direct type qualifier is one of the type qualifiers specific to the fcc907.

For the fcc907, _ _direct-type qualified variables are accessed using direct addressing.  In direct
addressing, the address of a variable mapped in the direct area (page pointed to by the dtb
register) is accessed in eight bit units.  As a result, a smaller code than that used when
accessing using normal addressing can be generated. 

Figure 10.2-4 "Defining and Accessing a Variable Qualified Using the _ _direct Type Qualifier"
shows an example of defining and accessing a variable qualified using the _ _direct type
qualifier.  In this example, the _ _direct type qualifier is specified when the variable d_data is
defined.  See CHAPTER 13 "MAPPING VARIABLES QUALIFIED WITH THE TYPE QUALIFIER
_ _direct" for details on variables qualified using the _ _direct type qualifier.

Figure 10.2-4  Defining and Accessing a Variable Qualified Using the _ _direct Type Qualifier

[Tip]

Softune C Checker:

The Softune C Checker outputs a warning if the _ _direct type qualifier, a language
extension, is used in a definition or declaration.  The fcc907 and fcc896 support the same
function for defining and accessing variables qualified by the _ _direct type qualifier.  This
check function is useful for porting programs between the fcc907 and fcc896.

DPR (direct page)
register

24-bit physical address

DTB (data bank)
register

Direct address
1 _ _direct unsigned char d_data;
2

3 unsigned char a;

4

5 void func_direct(void)

6 {

7 d_data = 0x10;

8

9 a = 0x10;

10 }

DI 000000 ----------<DIRDATA>---------- 9 .SECTION DIRDATA, DIR, ALIGN=2

10 .GLOBAL _d_data

DI 000000 11 _d_data:

DI 000000 [1]B 12 .RES.B 1

13

CO 000000 -----------<CODE>------------ 14 .SECTION CODE, CODE, ALIGN=1

15 ;-------begin_of_function

16 .GLOBAL _func_direct

CO 000000 17 _func_direct:

CO 000000 0800 18 LINK #0

CO 000002 440010 R 19 MOV S:_d_data, #16

CO 000005 71DF000010 R 20 MOV _a, #16

CO 00000A 09 21 UNLINK

CO 00000B 67 22 RET

AAAAAAAA BBBBBBBB CCCCCCCC

AAAAAAAA BBBBBBBB CCCCCCCC

MSB LSB

Specification of
the _ _direct type
qualifier 
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10.2.4 _ _interrupt Type Qualifier

This section describes the _ _interrupt type qualifier, which an fcc907 extended type 
qualifier.  The _ _interrupt type qualifier is specified for an interrupt function.

■ Functions with _ _interrupt Type Qualifier

The _ _interrupt type qualifier is one of the fcc907-specific type qualifiers.

The fcc907 uses the _ _interrupt type qualifier for the specification of interrupt functions.

When an interrupt function qualified by the _ _interrupt type qualifier is called, it saves the
contents of work registers before performing any processing.  When the function ends, it
restores all saved registers, returns control to the location where the interrupt occurred, and
resumes processing. Use of this type qualifier facilitates coding of interrupt functions in C. 

Figure 10.2-5 "_ _interrupt Type Qualifier Specification" shows an example of coding an
interrupt function qualified by the _ _interrupt type qualifier.  In this example, when an interrupt
occurs and the interrupt function int_func( ) is executed, register RW0 is saved on the stack.
Next, registers R0 and R1 are saved on the stack.

When the interrupt terminates, the function restores the saved registers and issues the reti
instruction.  The reti instruction restores the values of the PC and PS saved to the stack and
returns control to the location where the interrupt occurred.

Figure 10.2-5  _ _interrupt Type Qualifier Specification

See CHAPTER 14 "CREATING AND REGISTERING INTERRUPT FUNCTIONS" for
information about functions qualified by the _ _interrupt type qualifier.

[Tip]

Softune C Checker:

The Softune C Checker outputs a warning if the _ _interrupt type qualifier, a language
extension, is used in a definition or declaration. The fcc907 supports the same function for

The _ _interrupt type qualifier is used for defining 
or accessing an interrupt processing function.

Specification of 
the _ _interrupt 
type qualifier

When the function starts, 
of all registers used in 
the function are saved.  
Only RW0 is saved for 
this function.

When the function terminates, all saved registers 
are restored and the reti instruction is issued.
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coding interrupt functions qualified by the _ _interrupt-type as the fcc896 and fcc911.  This
check function is useful for porting programs between the fcc896 or fcc911 and fcc896.
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10.2.5 _ _nosavereg Type Qualifier

This section describes the _ _nosavereg type qualifier, which an fcc907 extended type 
qualifier.  The _ _nosavereg type qualifier is specified for an interrupt function together 
with the _ _interrupt type qualifier.

■ Functions with _ _nosavereg Type Qualifier

The _ _nosavereg type qualifier is one of the type qualifiers specific to the fcc907.

In the fcc907, the _ _nosavereg type qualifier is specified for an interrupt function together with
the _ _interrupt type qualifier.

When an interrupt function qualified using the _ _nosaverreg type qualifier is called, the interrupt
function executes processing without saving registers.  This applies even if registers to be used
in the function are present.  When the function terminates, it issues the reti instruction and
processing resumes at the location where the interrupt occurred.  Because the #pragma
register/noregister for switching the register banks can also be used at the same time, high-
speed interrupt processing is enabled. 

Figure 10.2-6 "_ _nosavereg Type Qualifier Specification" shows an example of coding an
interrupt function with the _ _nosavereg type qualifier specified.  In this example, the function is
executed without registers being saved when the interrupt function timer_int( ) is executed.  The
RW0 register is used in this function.

When the interrupt terminates, the function restores the saved registers and issues the reti
instruction.  The reti instruction restores the values of the PC and PS saved on the stack and
returns control to the location where the interrupt occurred.

Figure 10.2-6  _ _nosavereg Type Qualifier Specification

See CHAPTER 14  "CREATING AND REGISTERING INTERRUPT FUNCTIONS" for
information about functions qualified by the _ _nosavereg type qualifier.

When the function terminates, all saved registers 
are restored and the reti instruction is issued.

Specification of 
the __nosavereg 
type qualifier

When the function starts, no registers 
are saved even if registers to be used 
in the function are present. 
RW0 is used for this function.

When the __nosavereg type qualifier is used to define or access an 
interrupt processing function, the __interrupt type qualifier can be 
used at the same time.
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[Tip]

Softune C Checker:

The Softune C Checker outputs a warning if the _ _nosavereg type qualifier, a language
extension, is used in a definition or declaration. The fcc907 supports the same function for
coding interrupt functions qualified by the _ _nosavereg type qualifier as the fcc896.  This
check function is useful for porting programs between the fcc907 and fcc896.
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10.3 Extended Functions Using #pragma

This section describes #pragma as used in the fcc907.
The fcc907 provides the following eight #pragma types as extended functions:
• asm/endasm
• inline
• section
• ilm/noilm
• register/noregister
• ssb/nossb
• except/noexcept
• intvect/defvect

■ Extended Functions Using #pragma

The fcc907 provides the following #pragma functions:

A control line that begins with #pragma specifies operations specific to the fcc907.  Sections
10.3.1 "Inserting Assembler Programs Using #pragma asm/endasm" to 10.3.8 "Generating an
Interrupt Vector Table Using #pragma intvect/defvect" briefly describe the #pragma functions
and provide notes on their use.

fcc907#pragma
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10.3.1 Inserting Assembler Programs Using #pragma asm/
endasm

This section describes #pragma asm/endasm.
The #pragma asm/endasm can be used to code assembly instructions in C programs.

■ Inserting Assembler Programs Using #pragma asm/endasm

The #pragma asm directive specifies the start of insertion of an assembler program.

The #pragma endasm directive specifies the end of insertion of an assembler program.

C programs cannot directly set the contents of CPU registers.  Moreover, some operations in C
programs cannot be executed fast enough. To execute such operations, you can use #pragma
asm/endasm to include Assembler programs into the C program.

Figure 10.3-1 "Coding #pragma asm/endasm" shows an example of coding #pragma asm/
endasm.  At the location where #pragma asm/endasm are used, Assembler instructions are
expanded.

See CHAPTER 11  "NOTES ON ASSEMBLER PROGRAM IN C PROGRAMS" for information
about including Assembler modules using #pragma asm/endasm.

Figure 10.3-1  Coding #pragma asm/endasm

#pragma asm

#pragma endasm

The assembler executes
the program assuming that
the character string coded
starting in column 2 is an
instruction.  A tab code or
null character string must
be included at the
beginning of the character
string.

void main(void)
{

int flag = 0x01
int i;

#pragma asm
MOVN A, #0
MOVW @RW3+-2, A

L_24:
MOVW A, @RW3+-2
CMPW A, #100
BGE L_23
INCW @RW3+-2
BRA L_24

L_23:
#pragma endasm
}

.PROGRAM p_asm

.LIBRARY "lib907s.lib"

.SECTION CODE, CODE, ALIGN=1
;-------begin_of_function

.GLOBAL _main
_main:

LINK #2
MOVN A, #1
MOVW @RW3+-2, A
MOVN A, #0
MOVW @RW3+-2, A

L_24:
MOVW A, @RW3+-2
CMPW A, #100
BGE L_23
INCW @RW3+-4
INCW @RW3+-2
BRA L_24

L_23:
UNLINK
RET
.END
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10.3.2 Specifying Inline Expansion Using #pragma inline

This section describes inline expansion using #pragma inline. The #pragma inline 
directive is used to specify a function that is to be expanded.

■ Inline Expansion Using #pragma inline

The #pragma inline directive is used to specify a function that is to be expanded.  The specified
function is expanded in line during compilation. After this specification, the specified function is
expanded in line whenever it is called.

Figure 10.3-2 "Inline Expansion of a Function Using #pragma inline" shows an example of using
#pragma inline.

In this example, inline expansion of the function checksum is specified on line 16. Therefore,
when the function proc_block01( ) is called, function checksum will be expanded in line.

Figure 10.3-2  Inline Expansion of a Function Using #pragma inline

See CHAPTER 7  "REDUCING FUNCTION CALLS BY EXANDING FUNCTIONS IN LINE" for
information about expanding functions in line.

<Notes>

When inline expansion is specified using #pragma inline, use the -O option to specify
optimization during compilation.  If optimization if not specified, inline expansion will not be
executed.

#pragma inline   name-of-function-expanded-inline

Code for the entire function
is generated because the
call is an ordinary call.

Specification
of inline
expansion Inline

expansion

Because inline expansion is
specified, the code for function
checksum( ) is embedded.
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[Tip]

For the fcc907:

The following option can be used to specify the function to be expanded in line during
compilation.

Use the following option to specify the number of  lines of the function to be expanded in line
during compilation.

Optimization must be specified using the -O option.

-x function-name option

-xauto size option
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10.3.3 Using #pragma section to Change Section Names and 
Specify Mapping Address

This section briefly describes how to use #pragma section to change section names 
and section attributes and to specify mapping addresses.

■ Using #pragma section to Change Section Names and Specify Mapping Addresses

The #pragma section directive can change the default section names output by the fcc907 to
user-specified section names.  In addition, #pragma section can change the section attributes.

The fcc907 can specify the sections listed in Table 10.3-1 "Default Sections That Can Be
Specified Using #pragma section" for the default section, and can specify the section attributes
listed in Table 10.3-2 "Default Section Attributes That Can Be Specified Using #pragma section"
for "attr."

For the mapping address, specify the beginning address of where the specified section is to be
mapped.

#pragma section default-section-name [=new-section-name][, attr=attribute][, locate=mapping-address]

Table 10.3-1  Default Sections That Can Be Specified Using #pragma section

Section name Section type

CODE Code area

INIT Area for variables that are initialized

DCONST Initial value area for variables with the initial value specified

CONST Area for variables qualified by the const type qualifier

CINIT RAM area for const-type qualified variables when a CPU that does not 
have the mirror ROM function is used

DATA Area for variables that are not initialized

DIRINIT Area for variables qualified by the_ _direct type qualifier with initial value 
specified

DIRCONST nitial value area for _ _direct-type qualified variables with initial value 
specified

DIRDATA Area for variables qualified by the_ _direct type qualifier without initial 
value specified

IO Area for variables qualified by the _ _io type qualifier 

INTVECT Interrupt vector table area

DTRANS
DCLEAR

Data table for initializing external variables
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Figure 10.3-3 "Changing the Output Section Using #pragma section" shows an example of
using #pragma section.  In this example, the default I/O section is changed to the IO_PDR
section.  In addition, the IO_PDR section is mapped into the area beginning at address
0x000000.  As a result, the variable qualified by the _ _io type qualifier is output to the IO_PDR
section allocated to the area beginning with address 0x000000.

Figure 10.3-3  Changing the Output Section Using #pragma section

[Tip]

For the fcc907:

The following option can be used to specify the same operation as that of #pragma section
during compilation.

Table 10.3-2  Default Section Attributes That Can Be Specified Using #pragma section

Section attribute name Explanation

CODE Program code area

DATA Area for variables that are not initialized

CONST Area for variables whose specified initial value does not change

COMMON Shared variables and shared area

STACK Stack area

IO Input-output port area

IOCOMMON Input-output area that can be shared with the linker

DIR Direct access area

DIRCONST Direct access area in which initial values that do not change are 
mapped

DIRCOMMON Direct access area that can be shared with the linker

The default I-O section is changed to the IO_PDR section using #pragma section.
Address 0x000000 is specified in the locate operand as the mapping address of the IO_PDR section.

#pragma section IO=IO_PDR, locate=0x000000

_ _io unsigned char IO_PDR0;

_ _io unsigned char IO_PDR1;

unsigned char a = 0x0f;

unsigned char b = 0x01;

void func_io(void)

{

char test1,test2;

test1 = a + b;

test2 = IO_PDR0 + IO_PDR1;

}

.SECTION IO_PDR, IO, LOCATE=H'0

.GLOBAL _IO_PDR0
_IO_PDR0:

.RES.B 1

.GLOBAL _IO_DDR0
_IO_DDR0:

.RES.B 1

.SECTION DCONST, CONST, ALIGN=2

.DATA.B 1

.DATA.B 15

.SECTION INIT, DATA, ALIGN=2

.GLOBAL _b
_b:

.RES.B 1

.GLOBAL _a
_a:

.RES.B 1

.SECTION CODE, CODE, ALIGN=1

-s default-section-name=new-section-name [, attribute][, mapping-address] option
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10.3.4 Specifying the Interrupt Level Using #pragma ilm/noilm

This section describes #pragma ilm/noilm.
The #pragma ilm/noilm directive is used to set the function interrupt level.

■ Specifying the Interrupt Level Using #pragma ilm/noilm

The #pragma ilm directive specifies the function interrupt level.  It is used to specify the interrupt
level of each function.

The #pragma noilm releases the switched interrupt level.

Figure 10.3-4  Using #pragma ilm/noilm to Set Function Interrupt Levels

Figure 10.3-4 "Using #pragma ilm/noilm to Set Function Interrupt Levels" shows an example of
a function that uses #pragma ilm.

In this example, 0 is specified as the interrupt level when function p_ilm1( ) on line 1 is
executed.  The specification of #pragma noilm on line 15 releases the interrupt level specified
using #pragma ilm(0).  As a result of the release, the interrupt level changes to 0 when function
p_ilm1( ) is called, but it does not change when function sub_ilm1( ) is called.

The interrupt level of function sub_ilm1( ) depends on the state when function sub_ilm1( ) is
called. When function sub_ilm1( ) is executed, processing is executed using the interrupt level

#pragma ilm (interrupt-level-number)

#pragma noilm

Zero is specified as the interrupt level of function p_ilm1( ).
As a result, the interrupt level is 0 during execution of 
function p_ilm1( ).

The interrupt level specified using #pragma
ilm(0) is released.

The function interrupt level after #pragma noilm is not explicitly specified.
The interrupt level of function sub_ilm1( ) depends on the interrupt level of the function
that called function sub_ilm1( ).

1 #pragma ilm(0)

2

3 int p_ilm1(int a, int b)

4 {

5 int c = 0;

6

7 if(a > b)

8 c = a - b;
9 else

10 c = b - a;

11

12 return(c);
13 }

14

15 #pragma noilm

16

17 long sub_ilm1(long a, long b)

18 {

19 long add;

20

21 add = a + b;

22

23 return(add);

24 }

_p_ilm1:

MOV ILM, #0

LINK #2

;;;; {

;;;; int c = 0;

MOVN A, #0

_sub_ilm1:
LINK #4

;;;; {

Range of interrupt
level 0
specification
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of the function that called function sub_ilm1( ).

As shown in Figure 10.3-5 "Using #pragma ilm to Set the Interrupt Level for Each Function",
when creating a system in which the interrupt level of a function changes, use #pragma ilm to
specify the interrupt level.

The minimum unit for which #pragma ilm/noilm can specify the interrupt level is a single
function.  To change the interrupt level within a function, use the built-in function _ _set_il( ).

Figure 10.3-5  Using #pragma ilm to Set the Interrupt Level for Each Function

<Notes>

Code #pragma ilm/noilm outside the function. The minimum unit for which the interrupt level
can be changed using #pragma ilm/noilm is a function.  To temporarily change the interrupt
level during execution of a function, use the built-in function _ _set_il( ).

Be aware that #pragma noilm only releases the specified #pragma ilm.  It does not include a
function for returning the interrupt level to what it was before #pragma ilm was specified.

Zero is specified as the interrupt level of function p_ilm1( ).
As a result, the interrupt level is 0 during execution of 
function p_ilm1( ).

Specifies 1 as the interrupt level of function
sub_ilm2( ) using #pragma ilm(1).

1 #pragma ilm(0)

2
3 int p_ilm2(int a, int b)

4 {

5 int c = 0;

6

7 if(a > b)

8 c = a - b;

9 else

10 c = b - a;

11

12 return(c);

13 }

14

15 #pragma ilm(1)

16

17 long sub_ilm1(long a, long b)

18 {

19 long add;

20

21 add = a + b;

22

23 return(add);

24 }

_p_ilm2:

MOV ILM, #0

LINK #2

;;;; {
;;;; int c = 0;

MOVN A, #0

MOVW @RW3+-2, A

_sub_ilm2:

MOV ILM, #1

LINK #4

;;;; {

Range of level
0 specification
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10.3.5 Setting the Register Bank Using #pragma register/
noregister

This section describes #pragma register/noregister.
The #pragma register/noregister directive is used to specify the register bank used by 
a function.

■ Setting the Register Bank Using #pragma register/noregister

The #pragma register directive specifies the register bank used.  This specification enables to
change the register bank used for a function.

The #pragma noregister directive releases the specification of the register bank.

Figure 10.3-6  Using #pragma register/noregister for a Function

Figure 10.3-6 "Using #pragma register/noregister for a Function" shows an example of using
#pragma register for a function.  In this example, the register bank that will be used during
execution of function p_reg1( )is set to 3 on line 1.  On line 15, #pragma noregister releases the
register bank specification set by #pragma register(3).  As a result of the release, the register
bank switches to 3 when function p_reg1( ) is called, but does not change when function
sub_reg1( ) is called.

#pragma register (number-of-register-bank-used)

#pragma noregister

Specifies 3 as the register bank used by function p_reg1( ).

Releases the register bank specification
set with #pragma register(3).

The register bank used after #pragma noregister and subsequent registers are not specified.
The register bank used by function sub_reg1( ) depends on the function that called function
sub_reg1( ).

1 #pragma register(3)

2
3 int p_reg1(int a, int b)

4 {

5 int c = 0;

6

7 if(a > b)

8 c = a - b;

9 else

10 c = b - a;

11

12 return(c);

13 }

14

15 #pragma noregister

16

17 long sub_reg1(long a, long b)

18 {

19 long add;

20

21 add = a + b;

22

23 return(add);

24 }

_p_reg1:
MOV RP, #3

LINK #2

;;;; {

;;;; int c = 0;

MOVN A, #0

MOVW @RW3+-2, A

_sub_reg1:

LINK #4

;;;; {

Range of register
bank 3
specification
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The register bank used by function sub_reg1( ) depends on the status when function  
sub_reg1( ) is called:

When function sub_reg1( ) is executed, the register bank used by the function that called
function sub_reg1( ) is used.

Note that #pragma noregister only cancels the specified #pragma register.  It does not have a
function for returning to the register bank that was being used before #pragma register was
specified.

As shown in Figure 10.3-7 "Using #pragma register to Specify the Register Bank for a
Function", when creating a system in which the used register bank changes for a function, use
#pragma register to specify the register bank used for the function.

Figure 10.3-7  Using #pragma register to Specify the Register Bank for a Function

<Notes>

Code #pragma register/noregister outside the function.  The minimum unit for which the
register bank can be specified using #pragma register/noregister is a function.  The register
bank cannot be changed using #pragma register/noregister during execution of a function.

Be aware that #pragma register only releases the specified #pragma register.  It does not
include a function for returning to the register bank that was being used before #pragma
register was specified.

Register bank three is specified for use 
by function p_reg2( ).

Register bank four is specified for use
by function sub_reg2( ).

1 #pragma register(3)

2

3 int p_reg2(int a, int b)

4 {

5 int c = 0;

6

7 if(a > b)

8 c = a - b;
9 else

10 c = b - a;

11

12 return(c);

13 }

14

15 #pragma noregister

16

17 #pragma register(4)

18

19 long sub_reg2(long a, long b)

20 {

21 long add;

22

23 add = a + b;

24

25 return(add);

26 }

27

28 #pragma noregister

_p_reg1:

MOV RP, #3

LINK #2

;;;; {

;;;; int c = 0;

MOVN A, #0

MOVW @RW3+-2, A

_sub_reg2:

MOV RP, #4

LINK #4

;;;; {

Range of register
bank 3
specification

Range of register
bank 4 
specification
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10.3.6 Setting Use of the System Bank Using #pragma ssb/
nossb

This section describes #pragma ssb/nossb.
The function with #pragma ssb/nossb specified accesses the system stack when a 
stack is used.

■ Accessing the System Stack Using #pragma ssb/nossb

Specifying #pragma ssb sets the system stack as the stack to be accessed by a function.  When
a stack is accessed, this specification loads the value of the system stack bank register (SSB)
and then generates a code for accessing the stack.

Specifying #pragma nossb cancels the specification that allows the system stack to be used.

Figure 10.3-8  Using #pragma ssb/nossb to Set and Allow the System Bank to Be Used

Figure 10.3-8 "Using #pragma ssb/nossb to Set and Release Use of the System Bank" shows
an example of a variable using #pragma ssb/nossb.  For a compact model or large model, the
variable is accessed using 24-bit addressing.  For normal stack access, the user stack is
accessed using 24-bit addressing.  However, if an interrupt function uses the system stack to

#pragma ssb

#pragma nossb

Specifies that the system stack be used.

When a stack is accessed, specifying 
#pragma nossb loads the value of the 
user stack bank (USB) and then 
generates a code for accessing the 
stack.

For a compact model or large 
model, a variable is accessed using 
24-bit addressing.  When a stack is 
accessed, specifying #pragma ssb 
loads the value of the system stack 
bank and then generates a code for 
accessing the stack.

1 #pragma ssb

2

3 void p_ssb(void)

4 {

5 int a, b, c;
6 int *p;

7

8 p = &a;

9 a = 20;

10 b = c = *p;

11 }

12

13 #pragma nossb

14

15 void sub_ssb(void)
16 {

17 int a, b, c;

18 int *p;

19

20 p = &a;

21 a = 20;

22 b = c = *p;

23 }

;-------begin_of_function
.GLOBAL _sub_ssb

_sub_ssb:
LINK #10
PUSHW (RW0,RW1)

;;;; {
;;;; p = &a;

MOV A, USB
MOVEA A, @RW3+-10
MOVL @RW3+-4, A

;;;; a = 20;
MOV A, #20
MOVW @RW3+-10, A

;;;; b = c = *p;
MOVL A, @RW3+-4
MOVL RL0, A
MOVW A, @RL0
MOVW RW0, A
MOVW A, RW0
MOVW @RW3+-6, A
MOVW A, RW0
MOVW @RW3+-8, A

;;;; }
POPW (RW0,RW1)
UNLINK
RET
.END

;-------begin_of_function
.GLOBAL _p_ssb

_p_ssb:
LINK #10
PUSHW (RW0,RW1)

;;;; {
;;;; p = &a;

MOV A, SSB
MOVEA A, @RW3+-10
MOVL @RW3+-4, A

;;;; a = 20;
MOV A, #20
MOVW @RW3+-10, A

;;;; b = c = *p;
MOVL A, @RW3+-4
MOVL RL0, A
MOVW A, @RL0
MOVW RW0, A
MOVW A, RW0
MOVW @RW3+-6, A
MOVW A, RW0
MOVW @RW3+-8, A

;;;; }
POPW (RW0,RW1)
UNLINK
RET

Cancels the specification that allows the 
system stack to be used.
105



CHAPTER 10  WHAT ARE LANGUAGE EXTENSIONS?
execute processing, the system stack must be accessed using 24-bit addressing.  In such
cases, #pragma ssb/nossb is specified to load the value of the SSB register and generate a
code for accessing the stack when the stack is accessed. 

In this example, #pragma ssb is specified on line 1 to specify use of the system stack when the
function p_ssb( ) is executed.  On line 13, #pragma nossb is specified to cancel the
specification, that allows the system stack to be used, given by #pragma ssb.  Then, when the
function p_ssb( ) is called and the stack accessed, the SSB register value will be loaded and a
code for accessing the stack is generated.  If the function sub_ssb( ) is called, however, the
value of the user stack bank register (USB register) will be loaded and a code for accessing the
stack is generated.

<Notes>

When #pragma ssb/nossb is specified to generate a code for accessing the system stack,
specify a compact or a large model at compilation.  If a compact model or large model is not
specified, a code for 16-bit addressing will be generated.
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10.3.7 Setting the Stack Bank Automatic Identification Function 
Using #pragma except/noexcept

This section describes #pragma except/noexcept.
A function with #pragma except/noexcept specified loads the value of the stack being 
used when the stack is accessed and then accesses the stack.

■ Accessing the System Stack Using #pragma except/noexcept

Specifying #pragma except notifies the compiler that the function is operating using the system
stack or user stack.  This specification identifies the status of the stack being used when the
stack is accessed, loads the value of the corresponding stack bank, and then generates a code
for accessing the stack.

Specifying #pragma noexcept cancels the specification that allows the stack bank automatic
identification function to be used.

Figure 10.3-9  Using #pragma except/noexcept to Set and Release the Stack Bank Automatic 
Identification Function

Figure 10.3-9 "Using #pragma except/noexcept to Set and Release the Stack Bank Automatic

#pragma except

#pragma noexcept

Specifies the stack bank automatic identification function.

When a stack is accessed, specifying 
#pragma noexcept loads the value of 
the user stack bank (USB) and then 
generates a code for accessing the 
stack.

1 #pragma except

2
3 void p_except(void)

4 {

5 int a, b, c;

6 int *p;

7

8 p = &a;

9 a = 20;

10 b = c = *p;
11 }

12

13 #pragma noexcept

14
15 void sub_except(void)

16 {

17 int a, b, c;

18 int *p;

19

20 p = &a;

21 a = 20;

22 b = c = *p;

23 }

;-------begin_of_function
.GLOBAL _sub_except

_sub_except:
LINK #10
PUSHW (RW0,RW1)

;;;; {
;;;; p = &a;

MOV A, USB
MOVEA A, @RW3+-10
MOVL @RW3+-4, A

;;;; a = 20;
MOV A, #20
MOVW @RW3+-10, A

;;;; b = c = *p;
MOVL A, @RW3+-4
MOVL RL0, A
MOVW A, @RL0
MOVW RW0, A
MOVW A, RW0
MOVW @RW3+-6, A
MOVW A, RW0
MOVW @RW3+-8, A

;;;; }
POPW (RW0,RW1)
UNLINK
RET
.END

;-------begin_of_function
.GLOBAL _p_except

_p_except:
LINK #10
PUSHW (RW0,RW1)

;;;; {
;;;; p = &a;

CALLP LOADSPB
MOVEA A, @RW3+-10
MOVL @RW3+-4, A

;;;; a = 20;
MOV A, #20
MOVW @RW3+-10, A

;;;; b = c = *p;
MOVL A, @RW3+-4
MOVL RL0, A
MOVW A, @RL0
MOVW RW0, A
MOVW A, RW0
MOVW @RW3+-6, A
MOVW A, RW0
MOVW @RW3+-8, A

;;;; }
POPW (RW0,RW1)
UNLINK
RETCancels the specification that allows the 

stack bank automatic identification 
function to be used.

For a compact or a large model, a 
variable is accessed using 24-bit 
addressing.  When a stack is 
accessed, specifying #pragma 
except loads the value of the stack 
bank (USB or SSB) being used and 
then generates a code for 
accessing the stack.
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Identification Function" shows an example of a variable using #pragma except/noexcept.  For a
compact or a large model, the variable is accessed using 24-bit addressing.  For normal stack
access, the user stack bank register (USB register) is used to access the user stack using 24-bit
addressing.  However, for an exception handler created using REALOS, the stack that is
accessed depends on the activation status.  In such cases, #pragma except/noexcept is
specified to load the value of the stack bank register being used and generate a code for
accessing the stack when the stack is accessed. 

In this example, #pragma except is specified on line 1.  This specification generates a code for
automatically identifying the stack bank when the function p_except( ) is executed.  On line 13,
#pragma noexcept is specified to release specification of the stack bank automatic identification
function specified by #pragma except.  Then, when the function p_except( ) is called, the status
of the stack being used is identified.  As a result, the value of the stack bank being used will be
loaded and a code for accessing the stack is generated.  If the function sub_except( ) is called,
however, the value of the user stack bank register (USB register) will be loaded and a code for
accessing the stack is generated.

<Notes> 

When #pragma except/noexcept is specified to use the automatic identification function for
the stack being used, specify a compact model or large model at compilation to generate
code for accessing the stack using 24-bit addressing.  If a compact or a large model is not
specified, a code for 16-bit addressing will be generated.
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10.3.8 Generating an Interrupt Vector Table Using #pragma 
intvect/defvect

This section describes #pragma intvect/defvect.
The #pragma intvect directive is used to generate an interrupt vector table.

■ Generating Interrupt Vector Tables Using #pragma intvect/defvect

The #pragma intvect directive generates an interrupt vector table for setting an interrupt
function.

The #pragma defvect directive specifies the function to be mapped to an interrupt vector that
has not been specified using #pragma intvect.

Figure 10.3-10  Example of Using #pragma intvect

Figure 10.3-10 "Example of Using #pragma intvect" shows an example of using #pragma
intvect.

In this example, startup routine start( ) is registered in interrupt vector number 8 and 16-bit
reload timer interrupt processing function timer_int( ) is registered in interrupt vector number 29. 

Zeros are set for vectors other than vector numbers 8 and 29 of the INTVECT section.

#pragma intvect interrupt-function-name vector-number

#pragma defvect interrupt-function-name

Startup routine start() is set for interrupt vector number 
8 and interrupt function timer_int() is set for interrupt 
vector number 29

1 extern _ _interrupt void _start(void);
2
3 extern _ _interrupt void timer_int(void);
4

6
5 #pragma intvect _start 8 0

7 #pragma intvect timer_int 29

.PROGRAM intvect

.LIBRARY "lib907s.lib"

.SECTION INTVECT, DATA, LOCATE=H'FFFF88

.ORG H'FFFF88

.DATA.L _timer_int

.ORG H'FFFFDC

.DATA.E _ _start

.DATA.B 0

.GLOBAL _timer_int

.GLOBAL _ _start

.END
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Figure 10.3-11  Example of Using #pragma defvect

Figure 10.3-11 "Example of Using #pragma defvect" shows an example of using #pragma
defvect.  In this example, interrupt function dummy( ) has been registered for all vector numbers
except 8 and 29, which were specified using #pragma intvect.

See CHAPTER 14 "CREATING AND REGISTERING INTERRUPT FUNCTIONS" for
information about the interrupt functions.

<Notes>

Note the following points when using #pragma intvect/defvect to define interrupt vector
tables.

Interrupt vector tables defined using #pragma intvect/defvect is output to an independent
section named INTVECT mapped into the area beginning with address h’fffc00’.  When
#pragma defvect is executed, the specified interrupt function is set for all interrupt vectors
that have not been specified using #pragma intvect in the INTVECT section.

When #pragma intvect/defvect is specified, define all interrupt vector tables in the same
compile unit.

The default interrupt function dummy( ) is set for an interrupt
vector that has not been specified using #pragma intvect.
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10.4 Interrupt-Related Built-in Functions 

This section briefly describes the built-in functions of the fcc907.
The fcc907 provides the following three built-in functions:
• _ _DI( )
• _ _EI( )
• _ _set_il( )

■ Using the Interrupt-Related Built-in Functions to Add Functions 

The fcc907 provides the following built-in functions related to interrupt processing:

Sections 10.4.1 "Disabling Interrupts Using _ _DI( )" to 10.4.3 "Setting the Interrupt Level Using
_ _set_il( )" provides brief notes on using each of the built-in functions.

fcc907 built-in functions
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10.4.1 Disabling Interrupts Using _ _DI( )

This section describes _ _DI( ), which is used to disable interrupts.
_ _DI( ) is used to disable interrupts in the entire system.

■ Disabling Interrupts Using _ _DI( )

The _ _DI( ) directive expands code that masks interrupts, thereby disabling interrupts in the
entire system.

Figure 10.4-1 "Using _ _DI( ) to Disable System Interrupts" shows an example of using _ _DI( )
to code a function that disables system interrupts.  See CHAPTER 14 "CREATING AND
REGISTERING INTERRUPT FUNCTIONS".

Figure 10.4-1  Using _ _DI( ) to Disable System Interrupts 

void _ _DI(void);

Interrupts are disabled.

Interrupt-disabled
state

Interrupts are enabled.

The _ _DI( ) directive outputs code that disables interrupts.
Interrupts are thus disabled until they are enabled again 
using _ _EI( ).
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10.4.2 Enabling Interrupts Using _ _EI( )

This section describes _ _EI( ), which is used to enable interrupts. 
The _ _EI( ) directive is therefore used to enable interrupts in the entire system.

■ Enabling Interrupts Using _ _EI( )

The _ _EI( ) directive expands code that releases masking of interrupts.  The _ _EI( ) directive is
therefore used to enable interrupts for the entire system.

Figure 10.4-2 "Using _ _EI( ) to Enable System Interrupts" shows an example of using _ _EI( )
to code a function that enables system interrupts.

See CHAPTER 14 "CREATING AND REGISTERING INTERRUPT FUNCTIONS" for
information about interrupt processing.

Figure 10.4-2  Using _ _EI( ) to Enable System Interrupts

void _ _EI(void);

Interrupts are disabled.

Interrupt-
disabled
state

Interrupts are enabled.

The _ _EI( ) directive outputs code that
enables interrupts.
Thereafter, interrupts are enabled.
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10.4.3 Setting the Interrupt Level Using _ _set_il( )

This section briefly describes how to set the interrupt level using _ _set_il( ).
The _ _set_il( ) directive is used to change the interrupt level of the entire system 
during execution of a function.

■ Setting the Interrupt Level Using _ _set_il( )

The _ _set_il( ) directive expands code that sets the interrupt level.  You can therefore use this
directive to determine the allowed interrupt level for the entire system.

Figure 10.4-3 "Using _ _set_il( ) to Set the System Interrupt Level" shows an example of using
_ _set_il( ) to code a function that sets the interrupt level for the entire system.

See CHAPTER 14 "CREATING AND REGISTERING INTERRUPT FUNCTIONS" for
information about interrupt processing.

Figure 10.4-3  Using _ _set_il( ) to Set the System Interrupt Level

void _ _set il(interrupt-level);

The _ _set_il(0) sets the interrupt level to 0.
Thereafter, the interrupt level during execution of an
interrupt function is set to 0.
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10.5 Other Built-in Functions

This section briefly describes the other built-in functions provided by the fcc907.
The fcc907 provides the following seven built-in functions:
• _ _wait_nop( )
• _ _mul( ) 
• _ _mulu( ) 
• _ _div( ) 
• _ _divu( ) 
• _ _mod( ) 
• _ _modu( )

■ Other Additional Built-in Functions

The fcc907 provides the following built-in functions not related to interrupt processing:

Sections 10.5.1 "Outputting a nop Instruction Using _ _wait_nop( )" to 10.5.7 "Unsigned 32-Bit/
Unsigned 16-Bit Remainder Calculation Using _ _modu( )" provides brief notes on using each of
the built-in functions.

_ _wait_nop( )
_ _mul( )
_ _mulu( )
_ _div( )
_ _di vu( )
_ _mod( )
_ _modu( )

fcc907 built-in functions
115



CHAPTER 10  WHAT ARE LANGUAGE EXTENSIONS?
10.5.1 Outputting a Nop Instruction Using _ _wait_nop( )

This section briefly describes the expansion of a nop instruction using _ _wait_nop( ).
The _ _wait_nop( ) is used to expand a single nop instruction at the location of the 
function call.

■ Outputting a nop Instruction Using _ _wait_nop( )

The _ _wait_nop( ) expands one nop instruction at the location of the function call.  Code the  _
_wait_nop( ) at which a nop instruction is required.

Figure 10.5-1 "Using _ _wait_nop( ) to Output a Nop Instruction" shows an example of coding a
function that uses _ _wait_nop( ).

Figure 10.5-1  Using _ _wait_nop( ) to Output a Nop Instruction

<Notes>

The fcc907 outputs one nop instruction at the location where _ _wait_nop( ) is coded.  Code
the _ _wait_nop( ) at which a nop instruction is required. 

If the _ _asm statement is used to code a nop instruction, the various optimization operations
can be suppressed. 

Coding _ _wait_nop( ) can control the timing so as to minimize the side effects of
optimization.

void _ _wait_nop(void);

One nop instruction is output at the location
of the function call.
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10.5.2 Signed 16-Bit Multiplication Using _ _mul( )

This section briefly describes signed 16-bit multiplication using _ _mul( ).
The _ _mul( ) is used to return the result of (signed 16 bits) x (signed 16 bits) 
operations as signed 32 bits.

■ Signed 16-Bit Multiplication Using _ _mul( )

The _ _mul( ) executes multiplication operations of (signed 16 bits) x (signed 16 bits) = (signed
32 bits).  The _ _mul( ) can be used to prevent an overflow of 16-bit operations.

This built-in function is enabled only when the MB number of the F2MC-16LX/16F series has
been specified using the -CPU option. 

Figure 10.5-2 "Signed 16-Bit Multiplication Using _ _mul( )" shows an example of coding a
function that uses _ _mul( ).

Figure 10.5-2  Signed 16-Bit Multiplication Using _ _mul( )

signed long _ _mul(signed int, signed int);
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10.5.3 Unsigned 16-Bit Multiplication Using _ _mulu( )

This section briefly describes unsigned 16-bit multiplication using _ _mulu( ).
The _ _mulu( ) is used to return the result of (unsigned 16 bits) x (signed 16 bits) 
operations as unsigned 32 bits.

■ Unsigned 16-Bit Multiplication Using _ _mulu( )

The _ _mulu( ) executes multiplication operations of (unsigned 16 bits) x (unsigned 16 bits) =
(unsigned 32 bits).  The _ _mulu( ) can be used to improve the efficiency of 16-bit operations.

Figure 10.5-3 "Unsigned 16-Bit Multiplication Using _ _mulu( )" shows an example of coding a
function that uses _ _mulu( ).

Figure 10.5-3  Unsigned 16-Bit Multiplication Using _ _mulu( )

unsigned long _ _mulu(unsigned int, unsigned int);
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10.5.4 Signed 32-Bit/Signed 16-Bit Division Using _ _div( )

This section briefly describes signed 32-bit/signed 16-bit division using _ _div( ).
The _ _div( ) is used to return the result of (signed 32 bits)/(signed 16 bits) operations 
as signed 16 bits.

■ Signed 32-Bit/Signed 16-Bit Division Using _ _div( )

The _ _div( ) executes division operations of (signed 32 bits)/(signed 16 bits) = (signed 16 bits).
The _ _div( ) can be used to improve the efficiency of 32-bit operations.

This built-in function is enabled only when the MB number of the F2MC-16LX/16F series has
been specified using the -CPU option.

Figure 10.5-4 "Signed 32-Bit/Signed 16-Bit Division Using _ _div( )" shows an example of
coding a function that uses _ _div( ). 

Figure 10.5-4  Signed 32-Bit/Signed 16-Bit Division Using _ _div( )

signed int _ _div(signed long, signed int);

;;;;
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10.5.5 Unsigned 32-Bit/Unsigned 16-Bit Division Using _ _divu( )

This section briefly describes unsigned 32-bit/unsigned 16-bit division using _ _divu( ).
The _ _divu( ) is used to return the result of (unsigned 32 bits)/(unsigned 16 bits) 
operations as unsigned 16 bits.

■ Unsigned 32-Bit/Unsigned 16-Bit Division Using _ _divu( )

The _ _divu( ) executes division operations of (unsigned 32 bits)/(unsigned 16 bits) = (unsigned
16 bits).  The _ _divu( ) can be used to improve the efficiency of 32-bit operations.

Figure 10.5-5 "Unsigned 32-Bit/Unsigned 16-Bit Division Using _ _divu( )" shows an example of
coding a function that uses _ _divu( ).

Figure 10.5-5  Unsigned 32-Bit/Unsigned 16-Bit Division Using _ _divu( )

unsigned int _ _divn(unsigned long, unsigned int);

unsigned int arg2,ans;

unsigned long arg1;

void sample(void)

{

ans = _ _divu(arg1, arg2);

}

.SECTION CODE, CODE, ALIGN=1

;-------begin_of_function

.GLOBAL _sample

_sample:

LINK #0

PUSHW (RW0)

;;;; {

;;;; ans = _ _divu(arg1, arg2);

MOVL A, _arg1

MOVW RW0, _arg2

DIVUW A, RW0

MOVW RW0, A

MOVW A, RW0

MOVW _ans, A

;;;; }

POPW (RW0)

UNLINK

RET

.END
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10.5.6 Signed 32-Bit/Signed 16-Bit Remainder Calculation Using 
_ _mod( )

This section briefly describes the remainder of signed 32-bit/signed 16-bit division 
using _ _mod( ).
The _ _mod( ) is used to return the remainder of (signed 32 bits)/(signed 16 bits) 
operations as signed 16 bits.

■ Signed 32-Bit/Signed 16-Bit Remainder Calculation Using _ _mod( )

The _ _mod( ) returns the remainder of the result of (signed 32 bits)/(signed 16 bits) operations
as signed 16 bits.  The _ _mod( ) can be used to improve the efficiency of 32-bit operations.

This built-in function is enabled only when the MB number of the F2MC-16LX/16F series has
been specified using the -CPU option. 

Figure 7.1-3 "Signed 32-Bit/Signed 16-Bit Remainder Calculation Using _ _mod( )" shows an
example of coding a function that uses _ _mod( ).

Figure 10.5-6  Signed 32-Bit/Signed 16-Bit Remainder Calculation Using _ _mod( )

signed int _ _mod(signed long, signed int);
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10.5.7 Unsigned 32-Bit/Unsigned 16-Bit Remainder Calculation 
Using _ _modu( )

This section briefly describes the remainder of unsigned 32-bit/unsigned 16-bit 
division using _ _modu( ).
The _ _modu( ) is used to return the remainder of (unsigned 32 bits)/(unsigned 16 bits) 
operations as unsigned 16 bits.

■ Unsigned 32-Bit/Unsigned 16-Bit Remainder Calculation Using _ _modu( )

The _ _modu( ) returns the remainder of the result of (unsigned 32 bits)/(unsigned 16 bits)
operations as unsigned 16 bits.  The _ _modu( ) can be used to improve the efficiency of 32-bit
operations.

Figure 10.5-7 "Unsigned 32-Bit/Unsigned 16-Bit Remainder Calculation Using _ _modu( )"
shows an example of coding a function that uses _ _modu( ).

Figure 10.5-7  Unsigned 32-Bit/Unsigned 16-Bit Remainder Calculation Using _ _modu( )

unsigned int _ _modu(unsigned long, unsigned int);
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CHAPTER 11 NOTES ON ASSEMBLER PROGRAM IN C 
PROGRAMS

This chapter provides notes on including Assembler program in C programs.

11.1  "Including Assembler Program in C Programs"

11.2  "Differences Between Using the _ _asm Statement and #pragma asm/
endasm"
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CHAPTER 11  NOTES ON ASSEMBLER PROGRAM IN C PROGRAMS
11.1 Including Assembler Code in C Programs

This section briefly describes how to code assembler program modules.
The _ _asm statement can code only one assembly language instruction.  The 
#pragma asm/endasm can code multiple assembly language instructions.

■ Coding Assembler Programs

Assembler source programs consist of the following fields:

The assembler executes the code assuming that the character string coded starting in column 2
is an instruction.  An Assembler instruction character string coded in a C source program will be
output as is to an assembly source file output by the C compiler.  Therefore, a tab code or null
character string is required at the beginning of the character string.

As shown in Table 11.1-1 "Coding Assembler Programs", the fcc907 can use the _ _asm
statement or #pragma asm/endasm to include Assembler program in C programs.

As listed in Table 11.1-2 "Location for Including Assembler Programs", coding can also be
divided into coding outside or inside a function based on the coding location in the C program.

Symbol field Instruction field Operand field Comment field Line-feed field

Table 11.1-1  Coding Assembler Programs

Function Coding method

_ _asm statement Only one Assembler instruction can be coded per _ _asm 
statement.

#pragma asm/endasm More than one Assembler instructions can be coded.

Table 11.1-2  Location for Including Assembler Programs

Coding location Explanation

Coding inside a function Assembler instructions are coded as part of the function.

Coding outside a function Because the Assembler instructions are expanded as an 
independent section, they must be defined in the section 
using a section definition pseudo-instruction.
124



11.1  Including Assembler Code in C Programs
■ Accessing Variables and Functions Defined in C Programs from Assembler Programs 

The names of external variables or functions defined in a C program are output as symbols with
an underscore attached as the result of compilation. When variables or functions defined in a C
program are referenced from an assembler program, the variables or functions are referenced
with the underscore attached.

Figure 11.1-1 "Referencing Variables in a C program from an Assembler Program" shows an
example of referencing variables defined in a C program from an assembler program.  In this
example, the external variables a and b have been defined in the C program.  In function  func1(
), the variable b is referenced as _b from the assembler program coded using #pragma asm/
endasm.

Figure 11.1-1  Referencing Variables in a C program from an Assembler Program

Figure 11.1-2 "Referencing a Variable and a Function in a C program from an Assembler
Program" shows an example of referencing a function and a variable defined in a C program
from an assembler program. In this example, function wait( ) is called after a value is assigned
to variable cont outside the function in the C program.  Variable cont and function wait( ) are
referenced from the assembler program as _cont and _wait that have a prefixed underscore.

The variables a and b defined in the
C program are expanded as variables
having a prefixed underscore.

The variable b defined in the C program is
referenced from the assembler program
as _b (with a prefixed underscore).

1 int a,b;

2

3 void main(void)

4 {

5 a = 0xff;

6

7 #pragma asm

8 MOVN A, #1

9 MOVW _b, A

10 #pragma endasm

11 }

.SECTION DATA, DATA, ALIGN=2

.ALIGN 2

.GLOBAL _b
_b:

.RES.B 2

.ALIGN 2

.GLOBAL _a
_a:

.RES.B 2

.SECTION CODE, CODE, ALIGN=1
;-------begin_of_function

.GLOBAL _main
_main:

LINK #0
;;;; {
;;;; a = 0xff;

MOV A, #255
MOVW _a, A

MOVN A, #1
MOVW _b, A

;;;; }
UNLINK
RET
.END
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CHAPTER 11  NOTES ON ASSEMBLER PROGRAM IN C PROGRAMS
Figure 11.1-2  Referencing a Variable and a Function in a C Program from an Assembler Program

<Notes>

Note the following points when using the _ _asm statement or #pragma asm/endasm to
include Assembler code in a C program:

• When using the _ _asm statement to code Assembler instructions, always include a tab code
or null character string at the beginning of the character string.

• The accumulator (A) register can be used unconditionally.  To use another register, save and
restore the register (this is to be performed by the user).

• Include only one Assembler instruction per _ _asm statement.

• If several Assembler instructions are included, use either as many _ _asm statements as
there are Assembler instructions, or use #pragma asm/endasm.

• If an _ _asm statement or #pragma asm/endasm is coded in a C program, optimization by
specifying "-O" for compilation may be suppressed.

• The fcc907 does not check Assembler code for errors. If an Assembler instruction coded in
an _ _asm statement or #pragma asm/endasm contains an error, the assembler will output
an error message.  Refer to the assembler manual for information about Assembler coding.

[Tip]

Softune C Checker:

The Softune C Checker will output a warning when Assembler instructions are included
using the _ _asm statement or #pragma asm/endasm.  The fcc896, fcc907, and fcc911
support the _ _asm statement and #pragma asm/endasm functions.  However, the registers
and instruction sets that can be used depend on the architecture.  This check function is
useful for identifying locations that can be rewritten for porting from the fcc896 or fcc911 to
the fcc907.

Function wait( ) defined in the C program is
expanded as function with a prefixed
underscore.

Variable cont and function wait( ) defined in the
C program are referenced from the assembler
program as _cont and _wait, with a prefixed
underscore.

;;;; cont = 0x3000;

MOVW _cont, #12288

;;;; wait();

CALL _wait

10 void main(void)
11 {

27 cont = 0x3000;
28 wait();
29 }
30 }
31
32 static void wait(void)
33 {
34 for ( ; cont > 0 ; cont--);
35 }
36
37
38 #pragma asm
39
40 .section code, code, ALIGN=1
41 .global _a_func1
42 _a_func1:

43 movw _cont, #12288
44 call _wait

45 ret

46
47 #pragma endasm
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11.2  Differences Between Using the _ _asm Statement and #pragma asm/endasm
11.2 Differences Between Using the _ _asm Statement and 
#pragma asm/endasm

This section briefly describes the differences between using the _ _asm statement and 
#pragma asm/endasm.
For including only one Assembler instruction in a function, use the _ _asm statement.

■ Including an Assembler Program Having Multiple Instructions in a Function

As listed in Table 11.1-1 "Coding Assembler Programs", an _ _asm statement can contain only
one Assembler instruction. However, #pragma asm/endasm can contain several Assembler
instructions at a time.

Figure 11.2-1 "Using the _ _asm Statement to Include Assembler Program in a Function" shows
an example of using the _ _asm statement to include two Assembler instructions in a function.

Figure 11.2-1  Using the _ _asm Statement to Include Assembler Program in a Function

Figure 11.2-2 "Using #pragma asm/endasm to Include Assembler Programs in a Function"
shows an example how the same function can be rewritten using #pragma asm/endasm.

These two examples are almost identical.  However, when only one Assembler instruction is to
be included in a function, we recommend to use the _ _asm statement.

Coding the _ _asm statement in a function

Assembler handles the character string 
coded from column 2 as the instruction. 
Enter a tab code or null character at the 
beginning of the character string.

1 int a,b;

2

3 void main(void)

4 {

5 a = 0xff;

6

7 _ _asm(" MOVN A, #1");

8 _ _asm(" MOVW _b, A");

9 }

.SECTION DATA, DATA, ALIGN=2

.ALIGN 2

.GLOBAL _b
_b:

.RES.B 2

.ALIGN 2

.GLOBAL _a
_a:

.RES.B 2

.SECTION CODE, CODE, ALIGN=1
;-------begin_of_function

.GLOBAL _main
_main:

LINK #0
;;;; {
;;;; a = 0xff;

MOV A, #255
MOVW _a, A

;;;; _ _asm("MOVN A, #1");
MOVN A, #1

;;;; _ _asm("MOVW _b, A");
MOVW _b, A

;;;; }
UNLINK
RET
.END
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Figure 11.2-2  Using #pragma asm/endasm to Include Assembler Programs in a Function

■ Coding an Assembler Program Outside a Function

When an assembler program is coded outside a function, the coded assembler program is
expanded as an independent section.  To code an assembler program outside a function, use a
pseudo-instruction for defining the section. If the section has not been defined, operation of the
coded Assembler instructions will be unpredictable.

Figure 11.2-3 "Using #pragma asm/endasm to Code Outside a Function" shows an example of
a function where #pragma asm/endasm is coded outside the function.

In this example, pseudo-instruction for defining the section is used outside the function to define
the 2-byte symbol _b for the assembler.  This symbol is accessed by the C function func1( ) as
variable b of type int.

When coding an assembler program outside a function, use #pragma asm/endasm.

Figure 11.2-3  Using #pragma asm/endasm to Code Outside a Function

Including #pragma asm/endasm in a function

More than one Assembler instruction can be coded
in the section between #pragma asm and #pragma
endasm.

1 int a,b;

2

3 void main(void)

4 {

5 a = 0xff;

6

7 #pragma asm

8 MOVN A, #1

9 MOVW _b, A

10 #

11 }

.SECTION DATA, DATA, ALIGN=2

.ALIGN 2

.GLOBAL _b
_b:

.RES.B 2

.ALIGN 2

.GLOBAL _a
_a:

.RES.B 2

.SECTION CODE, CODE, ALIGN=1
;-------begin_of_function

.GLOBAL _main
_main:

LINK #0
;;;; {
;;;; a = 0xff;

MOV A, #255
MOVW _a, A

;;;; MOVN A, #1
MOVN A, #1

;;;; MOVW _b, A
MOVW _b, A

;;;; }
UNLINK
RET
.END

pragma endasm

The pseudosection instruction is used to define
the section.

1 extern int b;

2

3 int a;

4

5 void main(void)

6 {

7 a = 0xff;

8 b = 0x01;

9 }

10

11 #pragma asm

12 .SECTION DATA, DATA, ALIGN=2

13 .ALIGN 2

14 .GLOBAL _b

15 _b:

16 .RES.B 2

17 #

.SECTION DATA, DATA, ALIGN=2

.ALIGN 2

.GLOBAL _a
_a:

.RES.B 2

.GLOBAL _b

.SECTION CODE, CODE, ALIGN=1
;-------begin_of_function

.GLOBAL _main
_main:

LINK #0
;;;; {
;;;; a = 0xff;

MOV A, #255
MOVW _a, A

;;;; b = 0x01;
MOVN A, #1
MOVW _b, A

;;;; }
UNLINK
RET
.SECTION DATA, DATA, ALIGN=2
.ALIGN 2
.GLOBAL _b

_b:
.RES.B 2

.END

pragma endasm
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[Tip]

Softune C Checker:

The Softune C Checker will output a warning when Assembler instructions are coded using 

_ _asm statement or #pragma asm/endasm.  The fcc896, fcc907, and fcc911 support the 

_ _asm statement and #pragma asm/endasm.  However, the registers and instruction sets
that can be used depend on the architecture.  This check function is useful for identifying
locations that can be rewritten from the fcc896 or fcc911 to the fcc907.
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CHAPTER 12 NOTES ON DEFINING AND ACCESSING 
THE I/O AREA

This chapter describes the definition and accessing of resources mapped into the I/O 
area.  The chapter uses as examples the I/O area of the MB90678 series of 

microcontrollers, which belong to the F 2MC-16 family of  microcontrollers, to explain 
how resources mapped into the I/O area are defined and accessed.

12.1  "M90678 Series I/O Areas"

12.2  "Defining and Accessing Variables Mapped into the I/O Areas"
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CHAPTER 12  NOTES ON DEFINING AND ACCESSING THE I/O AREA
12.1 M90678 Series I/O Areas

This section briefly describes the I/O areas of the F 2MC-16 Family.

For the F 2MC-16 Family, the area between addresses h’0000 and h’00bf of bank h’00 is 
used as the I/O area.

■ F2MC-16 Family Memory Mapping

Figure 12.1-1 "F2MC-16 Family Memory Mapping" shows memory mapping in the MB90678
series.

For the F2MC-16 Family, the area between addresses h’0000 and h’00bf of bank h’00 is used
as the I/O area.  Each resource register is mapped into this area.  The internal RAM area starts
from address h’0100 of bank h’00.  The size of the internal RAM area depends on the model.
For more information, refer to the manual of the model being used.

Figure 12.1-1  F 2MC-16 Family Memory Mapping

ROM area FF 
bank image

ROM area FF 
bank image

ROM area ROM area

ROM area ROM area ROM area

Single chip mode Internal ROM external bus External ROM external bus

General-purpose 
register

General-purpose 
register

General-purpose 
register

I/O area I/O area I/O area

External access 
No access
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12.1  M90678 Series I/O Areas
Figure 12.1-2 "MB90670/675 Series I/O Register Mapping" lists the resource registers mapped
between addresses h’0000 and h’00bf of the MB90678.  For details on the registers, refer to the
hardware manual.

Figure 12.1-2  MB90670/675 Series I/O Register Mapping

h'005e OCU1 h'00be ICR14 ICR15
h'005c h'00bc ICR12 ICR13
h'005a OCU0 h'00ba ICR10 ICR11
h'0058 h'00b8 ICR08 ICR09
h'0056 h'00b6 ICR06 ICR07
h'0054 h'00b4 ICR04 ICR05
h'0052 ICU h'00b2 ICR02 ICR03
h'0050 h'00b0 ICR00 ICR01

h'00a8 WDTC TBTC
h'00a6 HACR EPCR External pin

h'0044 IDAR h'00a4 ARSR
h'0042 ICCR IADR IIC bus IF h'00a2
h'0040 IBSR IBCR h'00a0 IBSR IBCR Low-power consumption

h'003e 16-bit reload timer 1 h'009e DIRR Delayed interrupt 
occurrence module

h'003c
h'003a 16-bit reload timer 0

h'0038
h'0036 PPG1

h'0034 PPG0

h'0032
h'0030 PPG0 PPG1 PPG0/PPG1

h'002e h'008e
h'002c h'008c
h'002a ELVR

DTP/external interrupt 
h'008a

h'0028 ENIR EIRR h'0088
h'0026 SIDR1/SODR1 SSR1 UART1 h'0086 ICU1

h'0024 SMR1 SCR1 h'0084
h'0022 UIDR0/UODR0 URD0

UART0
h'0082

h'0020 UMC0 USR0 h'0080
h'001e EICR Wake-up interrupt h'007e

h'007c
h'001a PDDA PDDB h'007a
h'0018 PDD8 PDD9 Port direction register h'0078 ICU0

h'0016 PDD6 PDD7 h'0076

h'0014 PDD4 ADER
Port four direction register
/analog input enable register h'0074

h'0012 PDD2 PDD3
Port direction register

h'0072
h'0010 PDD0 PDD1 h'0070
h'000e EIFR Wake-up interrupt h'006e

h'006c
h'000a PDRA PDRB h'006a
h'0008 PDR8 PDR9 h'0068 ICU

h'0006 PDR6 PDR7
Port data register

h'0066
h'0004 PDR4 PDR5 h'0064
h'0002 PDR2 PDR3 h'0062
h'0000 PDR0 PDR1 h'0060

CPR04H
CPR04L

CPR06H
CPR06L
CPR05H
CPR05L

CPR02L
CPR02H
CPR03L
CPR03H

CPR00L
CPR00H
CPR01L

CPR01H

CPR07H
CPR07L

ICR0L
ICR0H
ICR1L
ICR1H
ICR2L
ICR2H
ICR3L
ICR3H

System reserved area

CCR10
CCR11

TCRL
TCRH
CCR00
CCR01

TMR0/TMRLR0
TMCSR0

TCCR
ICC

ADCS
ADCR

TMR0/TMRLR0
TMCSR0

PRL1
PRL0

24-bit free run timer
Interrupt controller

24-bit free run timer

Watchdog timer
/time-base timer
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CHAPTER 12  NOTES ON DEFINING AND ACCESSING THE I/O AREA
12.2 Defining and Accessing Variables Mapped into the I/O Area

This section describes how to define and access the I/O area of the MB90678.

■ Operations for Accessing I/O Area Registers as Variables from C Programs

Basically, the following operations are required to access the registers in the I/O area as
variables from a C program:

1. Use #pragma section to specify the mapping address of the I/O area.

2. Specify the _ _io type qualifier to define a variable to be mapped into the area.

3. Specify the _ _io type qualifier to declare access to the variable mapped into the I/O area.

■ Sample I/O Register Files Provided by the fcc907

When the fcc907 is installed, files required for defining and accessing an I/O register are
created in the directories shown in Figure 12.2-1 "Directories Containing the Sample I/O Files".
This section uses an example of the MB90678 series to describe the method used for defining
and accessing the I/O area.

Figure 12.2-1  Directories Containing the Sample I/O Files

Installation directory

Directory containing tools, e.g., fcc907

Directory containing tools, e.g., C Checker, C Analyzer

Directory containing F2MC-16L library files

Directory containing standard header files

Sample I/O register files
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12.2  Defining and Accessing Variables Mapped into the I/O Area
■ Defining the MB90678 I/O Registers

All I/O registers of the MB90678 hardware can be defined by specifying the following option for
compilation of the files in the directories containing the sample I/O files:

The MB number specified by the -CPU option for compilation has already been defined in the
predefined macro _ _CPU_MB number_ _.  In the examples given below, _ _CPU_MB90675_ _
is defined.  The number is used to select the required files and define the I/O area.

Figure 12.2-2  Defining Variables Mapped into the I/O Area (1)

fcc907s -cpu mb90678 -c *.c

In definition file _ffmc16.c, proceed as follows: 
       Use #define to define _ _IO_DEFINE and include _ffmc16.h. 

In _ffmc16.h, proceed as follows: 
       Include _f16l.h. 
       Include _f16lx.h. 
       Include _f16f.h. 

In _f16l.h, use the predefined macro _ _CPU_MB90678_ _ to define the predefined 
macros of the series. 
Because the _f16lx.h is a definition file for the 16lx series, and the _f16f.h is a definition 
file for the 16f series, these files are read only.

Define _ _IO_DEFINE to read an 
include file.

/*

FFMC-16L/16LX/16/16H/16F family I/O register definition file V30L01
ALL RIGHTS RESERVED, COPYRIGHT (C) FUJITSU LIMITED 1998

LICENSED MATERIAL - PROGRAM PROPERTY OF FUJITSU LIMITED

*/

#define _ _IO_DEFINE

#include "_ffmc16.h"

/*
FFMC-16L/16LX/16/16H/16F family I/O register declaration file V30L01

ALL RIGHTS RESERVED, COPYRIGHT (C) FUJITSU LIMITED 1998

LICENSED MATERIAL - PROGRAM PROPERTY OF FUJITSU LIMITED
*/

#include "_f16l.h"

#include "_f16lx.h"
#include "_f16f.h"

#if defined(__NOT_MB90600_SERIES) && defined(__NOT_MB90500_SERIES) && ¥
defined(__NOT_MB90200_SERIES)

#error "The I/O register file of the specified CPU option does not exist"

#endif

_ffmc16.h

_ffmc16.c
/*

MB90600 series I/O register declaration file V30L01

ALL RIGHTS RESERVED, COPYRIGHT (C) FUJITSU LIMITED 1998
LICENSED MATERIAL - PROGRAM PROPERTY OF FUJITSU LIMITED

*/

#include "_f16ls.h"

#if defined(__CPU_MB90610A_SERIES)

#include "_mb90610.h"

#elif defined(__CPU_MB90620A_SERIES)

#include "_mb90620.h"

#elif defined(__CPU_MB90630A_SERIES)

#include "_mb90630.h"

#elif defined(__CPU_MB90640A_SERIES)

#include "_mb90640.h"

#elif defined(__CPU_MB90650A_SERIES)

#include "_mb90650.h"

#elif defined(__CPU_MB90660A_SERIES)

#include "_mb90660.h"

#elif defined(__CPU_MB90670_SERIES)

#include "_mb90670.h"

#elif defined(__CPU_MB90675_SERIES)

#include "_mb90675.h"

#endif

_f16l.h

/*
MB90500 series I/O register declaration file V30L01

ALL RIGHTS RESERVED, COPYRIGHT (C) FUJITSU LIMITED 1998

LICENSED MATERIAL - PROGRAM PROPERTY OF FUJITSU LIMITED

*/

#include "_f16lxs.h"

#if defined(__CPU_MB90520_SERIES)

#include "_mb90520.h"

#endif

_f16lx.h

/*

MB90200 series I/O register declaration file V30L01

ALL RIGHTS RESERVED, COPYRIGHT (C) FUJITSU LIMITED 1998
LICENSED MATERIAL - PROGRAM PROPERTY OF FUJITSU LIMITED

*/

#include "_f16fs.h"

#if defined(__CPU_MB90210_SERIES)

#include "_mb90210.h"

#endif

_f16f.h
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Figure 12.2-3  Defining the Variables Mapped into the I/O Area (2)

In _f16l.h, proceed as follows: 
        Include _f16ls.h. 
        In _f16ls.h, use the predefined macro _ _CPU_MB90678_ _ to define the 
        predefined macro _ _CPU_MB90675_SERIES. 
        Use the predefined macro _ _CPU_MB90675_SERIES defined in _f16ls.h to 
        include _mb90675.h. 

/*
MB90600 series I/O register declaration file V30L01
ALL RIGHTS RESERVED, COPYRIGHT (C) FUJITSU LIMITED 1998

LICENSED MATERIAL - PROGRAM PROPERTY OF FUJITSU LIMITED

*/

#include "_f16ls.h"

#if defined(__CPU_MB90610A_SERIES)

#include "_mb90610.h"

#elif defined(__CPU_MB90620A_SERIES)

#include "_mb90620.h"

#elif defined(__CPU_MB90630A_SERIES)
#include "_mb90630.h"

#elif defined(__CPU_MB90640A_SERIES)
#include "_mb90640.h"

#elif defined(__CPU_MB90650A_SERIES)

#include "_mb90650.h"

#elif defined(__CPU_MB90660A_SERIES)

#include "_mb90660.h"

#elif defined(__CPU_MB90670_SERIES)

#include "_mb90670.h"

#elif defined(__CPU_MB90675_SERIES)

#include "_mb90675.h"

#endif

_f16l.h
/*

MB90600 series CPU definition file V30L01
ALL RIGHTS RESERVED, COPYRIGHT (C) FUJITSU LIMITED 1998

LICENSED MATERIAL - PROGRAM PROPERTY OF FUJITSU LIMITED
*/

#if defined(__CPU_MB90610A__) || defined(__CPU_MB90V610A__) || ¥
defined(__CPU_MB90611A__) || defined(__CPU_MB90613A__)

#define __CPU_MB90610A_SERIES

#elif defined(__CPU_MB90675__) || defined(__CPU_MB90V670__) || ¥
defined(__CPU_MB90676__) || defined(__CPU_MB90677__) || ¥

defined(__CPU_MB90678__)

defined(__CPU_MB90T678__)

#define __CPU_MB90675_SERIES

#else
#define __NOT_MB90600_SERIES

#endif

_f16ls.h

/*
MB90675 series I/O register declaration file V30L01

ALL RIGHTS RESERVED, COPYRIGHT (C) FUJITSU LIMITED 1998

LICENSED MATERIAL - PROGRAM PROPERTY OF FUJITSU LIMITED

*/

#include "_f16lr.h"

#ifdef __IO_DEFINE

#define __IO_EXTERN

#else

#define __IO_EXTERN extern

#endif

/* I/O Area Address */
#ifdef __IO_DEFINE

#pragma section IO=IO_REG,locate=0x000000

#endif

__IO_EXTERN __io union io_pdr0 IO_PDR0; /* addr 00h */
__IO_EXTERN __io union io_pdr1 IO_PDR1; /* addr 01h */

__IO_EXTERN __io union io_pdr2 IO_PDR2; /* addr 02h */

__IO_EXTERN __io union io_pdr3 IO_PDR3; /* addr 03h */
__IO_EXTERN __io union io_pdr4 IO_PDR4; /* addr 04h */

__IO_EXTERN __io union io_pdr5 IO_PDR5; /* addr 05h */

__IO_EXTERN __io union io_pdr6 IO_PDR6; /* addr 06h */

__IO_EXTERN __io union io_pdr7 IO_PDR7; /* addr 07h */

__IO_EXTERN __io union io_pdr8 IO_PDR8; /* addr 08h */

_mb90675.h

|| defined(__CPU_MB90P678__) || ¥
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12.2  Defining and Accessing Variables Mapped into the I/O Area
Figure 12.2-4  Defining Variables Mapped into the I/O Area (3)

In _mb90675.h, proceed as follows: 
        Include _f16lr.h. 
        In _f16lr.h, include _f16ls.h. 
        In _f16ls.h, use the predefined macro _ _CPU_MB90678_ _ to define the 
        predefined macro _ _CPU_MB90675_SERIES. 
        In _f16lr.h, use the predefined macro _ _CPU_MB90675_SERIES defined in
        _f16ls.h to define the required type specific to the MB90675 series. 
        Because _ _IO_DEFINE has been defined in _ffmc16.c, use #define to define a 
        macro that replaces _ _IO_EXTERN with blanks. 
        Because _ _IO_DEFINE has been defined, use #pragma section to map the 
        IO_REG section starting from address 0x0000. 
        Specify _ _IO_EXTERN and the _ _io type qualifier to define the I/O register 
        variables specific to the MB90675 series mapped between addresses 0x0000 and 
        0x00bf. 
        Specify the static declaration and the _ _io type qualifier in an area having no I/O 
        registers to allocate a dummy area that cannot be accessed by other functions.

/*

MB90675 series I/O register declaration file V30L01

ALL RIGHTS RESERVED, COPYRIGHT (C) FUJITSU LIMITED 1998

LICENSED MATERIAL - PROGRAM PROPERTY OF FUJITSU LIMITED

*/

#include "_f16lr.h"

#ifdef __IO_DEFINE

#define __IO_EXTERN

#else

#define __IO_EXTERN extern

#endif

/* I/O Area Address */

#ifdef __IO_DEFINE

#pragma section IO=IO_REG,locate=0x000000

#endif

__IO_EXTERN __io union io_pdr0 IO_PDR0; /* addr 00h */

__IO_EXTERN __io union io_pdr1 IO_PDR1; /* addr 01h */

__IO_EXTERN __io union io_pdr2 IO_PDR2; /* addr 02h */

__IO_EXTERN __io union io_pdr3 IO_PDR3; /* addr 03h */

__IO_EXTERN __io union io_pdr4 IO_PDR4; /* addr 04h */

__IO_EXTERN __io union io_pdr5 IO_PDR5; /* addr 05h */

__IO_EXTERN __io union io_pdr6 IO_PDR6; /* addr 06h */

__IO_EXTERN __io union io_pdr7 IO_PDR7; /* addr 07h */

__IO_EXTERN __io union io_pdr8 IO_PDR8; /* addr 08h */

__IO_EXTERN __io union io_pdr9 IO_PDR9; /* addr 09h */

__IO_EXTERN __io union io_pdra IO_PDRA; /* addr 0Ah */

__IO_EXTERN __io union io_pdrb IO_PDRB; /* addr 0Bh */

#ifdef __IO_DEFINE

static __io unsigned char dmy_0C_0E[3]; addr 0C-0Eh */

#endif

defined(__CPU_MB90670_SERIES) || ¥ )

/*

MB90600 series I/O register declaration file V30L01

ALL RIGHTS RESERVED, COPYRIGHT (C) FUJITSU LIMITED 1998

LICENSED MATERIAL - PROGRAM PROPERTY OF FUJITSU LIMITED

*/

#include "_f16ls.h"

**************************************************************/

/* Sample program for I/O variables of reload timer register. */
/**************************************************************/

/* structure of TMCSR */
#if defined(__CPU_MB90610A_SERIES) || defined(__CPU_MB90620A_SERIES) || ¥

defined(__CPU_MB90640A_SERIES) || defined(__CPU_MB90660A_SERIES) || ¥

defined(__CPU_MB90670_SERIES) || defined(__CPU_MB90675_SERIES)
union io_tmcsr {

unsigned short word;

#if defined(__CPU_MB90610A_SERIES) || defined(__CPU_MB90620A_SERIES) || ¥

defined(__CPU_MB90675_SERIES)

struct {

unsigned short TRG :1;

unsigned short CNTE:1;

unsigned short UF :1;
unsigned short INTE:1;

unsigned short RELD:1;
unsigned short OUTL:1;

unsigned short OUTE:1;

unsigned short MOD :3;

unsigned short CSL :2;

unsigned short :4;
} bit;

_mb90675.h

_f16lr.h

defined(__CPU_MB90640A_SERIES) || (__CPU_MB90660A_SERIES) || ¥

/*

MB90600 series CPU definition file V30L01

ALL RIGHTS RESERVED, COPYRIGHT (C) FUJITSU

LIMITED 1998

LICENSED MATERIAL - PROGRAM PROPERTY OF
FUJITSU LIMITED

*/

#if defined(__CPU_MB90610A__) || ¥

defined(__CPU_MB90V610A__) || ¥
defined(__CPU_MB90611A__) || ¥

defined(__CPU_MB90613A__)
#define __CPU_MB90610A_SERIES

_f16ls.h

#elif defined(__CPU_MB90675__) || ¥

defined(__CPU_MB90V670__) || ¥

defined(__CPU_MB90676__) || ¥
defined(__CPU_MB90677__) || ¥

defined( __CPU_MB90678__) ||

defined(__CPU_MB90P678__) || ¥

defined(__CPU_MB90T678__)

#define __CPU_MB90675_SERIES

#endif
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CHAPTER 12  NOTES ON DEFINING AND ACCESSING THE I/O AREA
■ Accessing the MB90678 I/O Registers

To access the registers mapped into the I/O area, include _ffmc16.h.  Do not define 

_ _IO_DEFINE using #define (see (1) in Figure 12.2-5 "Accessing Variables Mapped into the  I/
O Area (1)").  The following describes the access declaration when the MB90678 is used.

The MB number to specified in the -CPU option for compilation is defined in defined macro 

_ _CPU_MB number_ _.  In the examples shown below, _ _CPU_MB90675 is defined.  With
this definition, the required files are selected and access to the I/O area is declared.

Figure 12.2-5  Accessing Variables Mapped into the I/O Area (1)

In _ffmc16.h, proceed as follows: 
        Include _f16l.h. 
        Include _f16lx.h. 
        Include _f16f.h. 

In _f16l.h, use the predefined macro _ _CPU_MB90678_ _ to define the predefined 
macros of the series. 
Because the _f16lx.h is a definition file for the 16lx series, and the _f16f.h is a definition 
file for the 16f series, these files are read only.

To access an I/O register variable, include ffmc16.h without defining _ _IO_DEFINE.

#include "_ffmc16.h�

void main (void)

{

/*

FFMC-16L/16LX/16/16H/16F family I/O register declaration file V30L01

ALL RIGHTS RESERVED, COPYRIGHT (C) FUJITSU LIMITED 1998

LICENSED MATERIAL - PROGRAM PROPERTY OF FUJITSU LIMITED

*/

#include "_f16l.h"
#include "_f16lx.h"

#include "_f16f.h"

#if defined(__NOT_MB90600_SERIES) && defined(__NOT_MB90500_SERIES) && ¥
defined(__NOT_MB90200_SERIES)

#error "The I/O register file of the specified CPU option does not exist"

#endif

_ffmc16.h

/*

MB90600 series I/O register declaration file V30L01
ALL RIGHTS RESERVED, COPYRIGHT (C) FUJITSU LIMITED 1998

LICENSED MATERIAL - PROGRAM PROPERTY OF FUJITSU LIMITED

*/

#include "_f16ls.h"

#if defined(__CPU_MB90610A_SERIES)
#include "_mb90610.h"

#elif defined(__CPU_MB90620A_SERIES)

#include "_mb90620.h"

#elif defined(__CPU_MB90630A_SERIES)
#include "_mb90630.h"

#elif defined(__CPU_MB90640A_SERIES)

#include "_mb90640.h"

#elif defined(__CPU_MB90650A_SERIES)

#include "_mb90650.h"

#elif defined(__CPU_MB90660A_SERIES)

#include "_mb90660.h"

#elif defined(__CPU_MB90670_SERIES)

#include "_mb90670.h"

#elif defined(__CPU_MB90675_SERIES)
#include "_mb90675.h"

#endif

_f16l.h

/*

MB90500 series I/O register declaration file V30L01

ALL RIGHTS RESERVED, COPYRIGHT (C) FUJITSU LIMITED 1998

LICENSED MATERIAL - PROGRAM PROPERTY OF FUJITSU LIMITED

*/

#include "_f16lxs.h"

#if defined(__CPU_MB90520_SERIES)

#include "_mb90520.h"

#endif

_f16lx.h

/*

MB90200 series I/O register declaration file V30L01
ALL RIGHTS RESERVED, COPYRIGHT (C) FUJITSU LIMITED 1998
LICENSED MATERIAL - PROGRAM PROPERTY OF FUJITSU LIMITED

*/

#include "_f16fs.h"

#if defined(__CPU_MB90210_SERIES)
#include "_mb90210.h"

#endif

_f16f.h

Read the include file without defining _ _IO_DEFINE.
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12.2  Defining and Accessing Variables Mapped into the I/O Area
Figure 12.2-6  Accessing Variables Defined in the I/O Area (2)

In _f16l.h, proceed as follows: 
        Include _f16ls.h. 
        In _f16ls.h, use the predefined macro _ _CPU_MB90678__ to define the
        predefined macro _ _CPU_MB90675_SERIES. 
        Use the predefined macro _ _CPU_MB90675_SERIES defined in _f16ls.h to 
        include _mb90675.h.

/*
MB90600 series I/O register declaration file V30L01
ALL RIGHTS RESERVED, COPYRIGHT (C) FUJITSU LIMITED 1998

LICENSED MATERIAL - PROGRAM PROPERTY OF FUJITSU LIMITED

*/

#include "_f16ls.h"

#if defined(__CPU_MB90610A_SERIES)

#include "_mb90610.h"

#elif defined(__CPU_MB90620A_SERIES)

#include "_mb90620.h"

#elif defined(__CPU_MB90630A_SERIES)
#include "_mb90630.h"

#elif defined(__CPU_MB90640A_SERIES)
#include "_mb90640.h"

#elif defined(__CPU_MB90650A_SERIES)

#include "_mb90650.h"

#elif defined(__CPU_MB90660A_SERIES)

#include "_mb90660.h"

#elif defined(__CPU_MB90670_SERIES)

#include "_mb90670.h"

#elif defined(__CPU_MB90675_SERIES)

#include "_mb90675.h"

#endif

_f16l.h
/*

MB90600 series CPU definition file V30L01
ALL RIGHTS RESERVED, COPYRIGHT (C) FUJITSU LIMITED 1998

LICENSED MATERIAL - PROGRAM PROPERTY OF FUJITSU LIMITED
*/

#if defined(__CPU_MB90610A__) || defined(__CPU_MB90V610A__) || ¥
defined(__CPU_MB90611A__) || defined(__CPU_MB90613A__)

#define __CPU_MB90610A_SERIES

#elif defined(__CPU_MB90675__) || defined(__CPU_MB90V670__) || ¥
defined(__CPU_MB90676__) || defined(__CPU_MB90677__) || ¥

defined(__CPU_MB90678__) || defined(__CPU_MB90P678__) || ¥

defined(__CPU_MB90T678__)

#define __CPU_MB90675_SERIES

#else

#define __NOT_MB90600_SERIES

#endif

_f16ls.h

/*
MB90675 series I/O register declaration file V30L01
ALL RIGHTS RESERVED, COPYRIGHT (C) FUJITSU LIMITED 1998
LICENSED MATERIAL - PROGRAM PROPERTY OF FUJITSU LIMITED

*/

#include "_f16lr.h"

#ifdef __IO_DEFINE
#define __IO_EXTERN
#else
#define __IO_EXTERN extern
#endif

/* I/O Area Address */
#ifdef __IO_DEFINE
#pragma section IO=IO_REG,locate=0x000000
#endif

__IO_EXTERN __io union io_pdr0 IO_PDR0; /* addr 00h */
__IO_EXTERN __io union io_pdr1 IO_PDR1; /* addr 01h */
__IO_EXTERN __io union io_pdr2 IO_PDR2; /* addr 02h */
__IO_EXTERN __io union io_pdr3 IO_PDR3; /* addr 03h */
__IO_EXTERN __io union io_pdr4 IO_PDR4; /* addr 04h */
__IO_EXTERN __io union io_pdr5 IO_PDR5; /* addr 05h */
__IO_EXTERN __io union io_pdr6 IO_PDR6; /* addr 06h */
__IO_EXTERN __io union io_pdr7 IO_PDR7; /* addr 07h */
__IO_EXTERN __io union io_pdr8 IO_PDR8; /* addr 08h */
__IO_EXTERN __io union io_pdr9 IO_PDR9; /* addr 09h */
__IO_EXTERN __io union io_pdra IO_PDRA; /* addr 0Ah */
__IO_EXTERN __io union io_pdrb IO_PDRB; /* addr 0Bh */
#ifdef __IO_DEFINE
static __io unsigned char dmy_0C_0E[3]; /* addr 0C-0Eh */
#endif

_mb90675.h
139



CHAPTER 12  NOTES ON DEFINING AND ACCESSING THE I/O AREA
Figure 12.2-7  Accessing Variables Defined in the I/O Area (3)

<Notes>

Note the following points when defining I/O variables:

• Map variables qualified by the _ _io type qualifier to the I/O area defined from address
0x0000 to address 0x00bf.  The I/O area can be accessed using highly efficient dedicated
instructions.

• To define I/O variables after address 0x00bf, specify the volatile type qualifier.

• Initial values cannot be set for variables qualified by the _ _io type qualifier.

• Variables qualified by the _ _io type qualifier are handled as variables qualified by the
volatile type qualifier.  If the -K NOVOLATILE option is specified, the variables qualified by
the _ _io type qualifier will not be handled as variables qualified by the volatile type qualifier.

In _mb90675.h, proceed as follows: 
        Include _f16lr.h. 
        In _f16lr.h, include _f16ls.h. 
        In _f16ls.h, use the predefined macro _ _CPU_MB90675_ _ to define the predefined
        macro _ _CPU_MB90675_SERIES. 
        In _f16lr.h, use the predefined macro _ _CPU_MB90675_SERIES defined in _f16ls.h
        to define the required type specific to the MB90675 series. 
        Because _ _IO_DEFINE has not been defined, use #define to define a macro that 
        replaces _ _IO_EXTERN with extern. 
        Specify _ _IO_EXTERN and the _ _io type qualifier to declare access to the I/O 
        register variables specific to the MB90675 series.

/*

MB90675 series I/O register declaration file V30L01

ALL RIGHTS RESERVED, COPYRIGHT (C) FUJITSU LIMITED 1998

LICENSED MATERIAL - PROGRAM PROPERTY OF FUJITSU LIMITED

*/

#include "_f16lr.h"

#ifdef __IO_DEFINE

#define __IO_EXTERN

#else

#define __IO_EXTERN extern

#endif

/* I/O Area Address */

#ifdef __IO_DEFINE

#pragma section IO=IO_REG,locate=0x000000

#endif

__IO_EXTERN __io union io_pdr0 IO_PDR0; /* addr 00h */

__IO_EXTERN __io union io_pdr1 IO_PDR1; /* addr 01h */

__IO_EXTERN __io union io_pdr2 IO_PDR2; /* addr 02h */

__IO_EXTERN __io union io_pdr3 IO_PDR3; /* addr 03h */

__IO_EXTERN __io union io_pdr4 IO_PDR4; /* addr 04h */

__IO_EXTERN __io union io_pdr5 IO_PDR5; /* addr 05h */

__IO_EXTERN __io union io_pdr6 IO_PDR6; /* addr 06h */

__IO_EXTERN __io union io_pdr7 IO_PDR7; /* addr 07h */

__IO_EXTERN __io union io_pdr8 IO_PDR8; /* addr 08h */

__IO_EXTERN __io union io_pdr9 IO_PDR9; /* addr 09h */

__IO_EXTERN __io union io_pdra IO_PDRA; /* addr 0Ah */

__IO_EXTERN __io union io_pdrb IO_PDRB; /* addr 0Bh */

#ifdef __IO_DEFINE

static __io unsigned char dmy_0C_0E[3]; 0C-0Eh */

#endif

/*
MB90600 series I/O register declaration file V30L01

ALL RIGHTS RESERVED, COPYRIGHT (C) FUJITSU LIMITED 1998

LICENSED MATERIAL - PROGRAM PROPERTY OF FUJITSU LIMITED
*/

#include "_f16ls.h"

**************************************************************/

/* Sample program for I/O variables of reload timer register. */
/**************************************************************/

/* structure of TMCSR */
#if defined(__CPU_MB90610A_SERIES) || defined(__CPU_MB90620A_SERIES) || ¥

defined(__CPU_MB90640A_SERIES) || defined(__CPU_MB90660A_SERIES) || ¥

defined(__CPU_MB90670_SERIES) || defined(__CPU_MB90675_SERIES)

union io_tmcsr {

unsigned short word;
#if defined(__CPU_MB90610A_SERIES) || defined(__CPU_MB90620A_SERIES) || ¥

defined(__CPU_MB90640A_SERIES) ||
defined(__CPU_MB90670_SERIES) || ¥

defined(__CPU_MB90675_SERIES)

struct {

} bit;

_mb90675.h

_f16lr.h

unsigned short TRG :1;

unsigned short CNTE:1;

unsigned short UF :1;

unsigned short INTE:1;

unsigned short RELD:1;
unsigned short OUTL:1;

unsigned short OUTE:1;

unsigned short MOD :3;
unsigned short CSL :2;

unsigned short :4;

/*
MB90600 series CPU definition file V30L01

ALL RIGHTS RESERVED, COPYRIGHT (C) FUJITSU

LIMITED 1998

LICENSED MATERIAL - PROGRAM PROPERTY OF

FUJITSU LIMITED

*/

#if defined(__CPU_MB90610A__) ||

defined(__CPU_MB90V610A__) || ¥
defined(__CPU_MB90611A__) ||

defined(__CPU_MB90613A__)

#define __CPU_MB90610A_SERIES

#elif defined(__CPU_MB90675__) ||
defined(__CPU_MB90V670__) || ¥

defined(__CPU_MB90676__) ||
defined(__CPU_MB90677__) || ¥

defined(__CPU_MB90678__) ||

defined(__CPU_MB90P678__) || ¥

defined(__CPU_MB90T678__)

#define __CPU_MB90675_SERIES

#endif

_f16ls.h
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CHAPTER 13 MAPPING VARIABLES QUALIFIED WITH 
THE _ _direct TYPE QUALIFIER  

This chapter describes the variables qualified by the _ _direct type qualifier and the 
conditions for mapping them.
A variable qualified by the _ _direct type qualifier can be mapped in the page pointed 
to by the DPR register and accessed using direct addressing.

13.1  "Output Sections of and Access to Variables Qualified by the _ _direct 
Type Qualifier"

13.2  "Mapping Variables Qualified by the _ _direct Type Qualifier"
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CHAPTER 13  MAPPING VARIABLES QUALIFIED WITH THE _ _direct TYPE QUALIFIER
13.1 Output Sections of and Access to Variables Qualified by the 
_ _direct Type Qualifier

A variable qualified by the _ _direct type qualifier can be accessed by the direct 

addressing method specific to the F 2MC-16 family.
A variable qualified by the _ _direct type qualifier to which an initial value has been 
assigned is output to the DIRINIT section of the variable area and to the DIRCONST 
section of the initial value area.  A variable to which an initial value has not been 
assigned is output to the DIRDATA section.

■ Output Sections of Variables Qualified by the _ _direct Type Qualifier

Like other variables, the variables qualified by the _ _direct type qualifier have different output
section names depending on whether they are initialized.

An uninitialized variable qualified by the _ _direct type qualifier is output only to the DIRDATA
section.  This area is allocated in RAM, and is usually initialized to 0 by the startup routine.

An initialized variable is output to the DIRCONST section of the initial value area and to the
DIRINIT section of the variable area.  The DIRCONST section of the initial value area is
allocated in the ROM area.  The DIRINIT section of the variable area that is accessed at
execution is allocated in the RAM area.  The startup routine transfers the initial value in the
ROM area to the RAM area.  As a result, the total size of the required ROM and RAM areas is
twice the size of the defined variable.

Figure 13.1-1  Variables Qualified by the _ _direct Type Qualifier and Their Output Sections

DIRDATA

DIRINIT

DIRCONSTDIRDATA

DIRCONST

DIRINIT

Uninitialized variable Initialized variable

Link

ROM area

RAM area

The DIRCONST section of the initial 
value area is allocated in the ROM area.  
The DIRINIT section of the variable area 
that is accessed at execution is allocated 
in the RAM area. 
For an initialized variable, the total size of 
the required ROM and RAM areas is 
twice the size of the defined variable.

The startup routine transfers the initial 
value in the ROM area to the variable 
area in the RAM area.

For an uninitialized variable, the 
variable area is allocated only in the 
RAM area. 
The startup routine initializes this 
area to 0. 
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13.1  Output Sections of and Access to Variables Qualified by the _ _direct Type Qualifier
■ Accessing a Variable Qualified by the _ _direct Type Qualifier

For the fcc907, the addressing mode when a variable is accessed depends on the memory
model specified at compilation.  For a small or medium model, variables are accessed using 16-
bit addressing.  For a compact or large model, variables are accessed using 24-bit addressing
and the ADB register.  For a variable qualified by the _ _direct type qualifier, the variable is
accessed using direct addressing where addresses are accessed in eight bit units regardless of
the memory model. 

Figure 13.1-2 "Accessing a Variable Qualified by the _ _direct Type Qualifier" shows the
difference between normal variable access and access of a variable qualified by the _ _direct
type qualifier.  In this example, the address of variable data1 qualified by the _ _direct type
qualifier is accessed in eight bit units.  The address of variable data2, however, depends on the
memory model specified at compilation.  Variables accessed frequently should be qualified by
the _ _direct type qualifier.

Figure 13.1-2  Accessing a Variable Qualified by the _ _direct Type Qualifier

Compilation using a
small model

Compilation using a
large model

NO SECTION-NAME SIZE ATTRIBUTES

0 DATA . . . . . . . . . . 000002 DATA REL ALIGN=2
1 DIRDATA . . . . . . . . 000002 DIR REL ALIGN=2
2 CODE . . . . . . . . . . 000018 CODE REL ALIGN=1

NO SECTION-NAME SIZE ATTRIBUTES

0 DATA_* . . . . . . . . . 000002 DATA REL ALIGN=2
1 DIRDATA . . . . . . . . 000002 DIR REL ALIGN=2
2 DCLEAR . . . . . . . . . 000006 CONST REL ALIGN=2
3 CODE_* . . . . . . . . . 00001E CODE REL ALIGN=1

1 _ _direct int data1;
2 int data2;
3
4 int func_direct(void)
5 {
6 int total;
7
8 long mul;
9

10 total = data1 + data2;
11
12 mul = data1 * data2;
13
14 return(total);
15 }

CO 000000 21 _func_direct:

CO 000000 0806 22 LINK #6

CO 000002 4800 R 23 MOVW A, S:_data1

CO 000004 761F0000 R 24 ADDW A, _data2

CO 000008 CBFA 25 MOVW @RW3+-6, A

CO 00000A 4800 R 26 MOVW A, S:_data1

CO 00000C 783F0000 R 27 MULUW A, _data2

CO 000010 1C 28 EXTW

CO 000011 71B3FC 29 MOVL @RW3+-4, A

CO 000014 BBFA 30 MOVW A, @RW3+-6

CO 000016 09 31 UNLINK

CO 000017 67 32 RET

CO 000000 29 _func_direct:

CO 000000 0806 30 LINK #6

CO 000002 4200 R 31 MOV A, #bnksym _data2

CO 000004 6F11 32 MOV ADB, A

CO 000006 4800 R 33 MOVW A, S:_data1

CO 000008 06761F0000 R 34 ADDW A, ADB:_data2

CO 00000D CBFA 35 MOVW @RW3+-6, A

CO 00000F 4800 R 36 MOVW A, S:_data1

CO 000011 06783F0000 R 37 MULUW A, ADB:_data2

CO 000016 1C 38 EXTW

CO 000017 71B3FC 39 MOVL @RW3+-4, A

CO 00001A BBFA 40 MOVW A, @RW3+-6

CO 00001C 09 41 UNLINK

CO 00001D 66 42 RETP
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CHAPTER 13  MAPPING VARIABLES QUALIFIED WITH THE _ _direct TYPE QUALIFIER
13.2 Mapping Variables Qualified by the _ _direct Type Qualifier

All variables qualified by the _ _direct type qualifier must be mapped in the page 
pointed to by the DPR register.  Therefore, the total size of the variables qualified by 
the _ _direct type qualifier must not exceed 256 bytes.

■ Accessing Variables Using Direct Addressing

In direct addressing, only the eight low-order bits of an address of a variable accessed using 16
or 24 bits are accessed.  The eight-bit values that can be accessed are 0 to 255.  In direct
addressing, the DTB and DPR registers are used to determine the address to be accessed as
shown in Figure 13.2-1 "Areas into Which Variables Qualified by the _ _direct Type Qualifier
Can Be Mapped".  The following settings are required to access a variable using direct
addressing:

1. Set the DPR register in the data bank which is indicated by the DTB register.

2. Allocate the areas (DIRVAR and DIRINIT) of the variables qualified by the _ _direct type
qualifier into the page (256 bytes) indicated by the DPR register.

Figure 13.2-1  Areas into Which Variables Qualified by the _ _direct Type Qualifier Can Be Mapped 

■ _ _direct Type Qualifier and Initialization of the DTB Register

The DTB register accessed in direct addressing is initialized to 0x00 at reset. 

For a small or medium model in which the variable areas are restricted to 1 bank, there is no
problem if the initial values are used as is.  For a compact or large model in which the variable
areas can be specified for multiple banks, the numbers of banks used to map the DIRINIT and
DIRDATA sections must be set in the DTB register. 

Use the startup routine to set the DTB register.  For the startup routine provided by the fcc907,
the DTB register has been set up based on allocation of the DATA section.  Refer to these to
code the startup routine based on the system to be created.

data1

DIRDATA

DTB,SSB,USB(0x00)

DPR(0x04)

256 bytes

0x00 0x04

0x00 0x04 xx

DTB DPR Direct addressing

24-bit physical address

MSB LSB

mov A, S:_data1

DIRINIT

xx
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13.2  Mapping Variables Qualified by the _ _direct Type Qualifier
■ _ _direct Type Qualifier and Initialization of the DPR Register

The DPR register accessed in direct addressing is initialized to 0x01 at reset.

When a variable is accessed by direct addressing using the initial values of the DTB and DPR
registers as is, the 256-byte area starting from address h’0100 of the 0x00 bank will be enabled
for direct addressing.  However, an extended intelligent I/O service descriptor is already present
between addresses h’0100 and h’015f.  In addition, an area for a general-purpose register is
present between addresses h’180 and h’0380.  Therefore, when mapping variables qualified by
the _ _direct type qualifier for a small or medium model, initialize the DPR register based on use
of the extended intelligent I/O service and register bank.

For the startup routine provided by the fcc907, the DPR register has been set up based on
allocation of the DIRDATA section.  Refer to these to code the startup routine based on the
system to be created.

■ Mapping Variables Qualified by the _ _direct Type Qualifier

Figure 13.2-2 "Mapping Variables Qualified by the _ _direct Type Qualifier (Small Model)"
shows the link specification and an image of the actual mapping of the variables qualified by the
_ _direct type qualifier when a small model is specified.

In this example, the DIRDATA section is allocated starting from the page boundary after the
DATA section.  The DIRINIT section is then allocated.  The DIRCONST section for initial values
is allocated at the end of the section allocated in the ROM area.  At execution, the initial value
DIRCONST in the ROM area is transferred to the variable area in the RAM area.

Figure 13.2-2  Mapping Variables Qualified by the _ _direct Type Qualifier (Small Model)

Figure 13.2-3 "Mapping Variables Qualified by the _ _direct Type Qualifier (Large Model)"
shows the link specification and an image of the actual mapping of the variables qualified by the
_ _direct type qualifier when a large model is specified.

In this example, the DIRDATA section is allocated starting from address h’0100 of the 0x00
bank.  The DIRINIT section is then allocated.  The DIRCONST section for initial values is
allocated starting from the beginning of the 0xff bank.  At execution, the initial value DIRCONST
in the ROM area is transferred to the variable area DIRINIT in the RAM area.

INTVECT

DIRCONST

DCONST

CODE

STACK

DIRINIT

DIRDATA

INIT

DATA

DPR

DTB,SSB,USB

Register bank 0 

 I/O area

The initial value DIRCONST in the ROM 
area is transferred to the variable area 
DIRINIT in the RAM area. 

Because the page boundary has been 
specified at linkage, DIRDATA is allocated 
starting from the page boundary.

Because the page pointed to by the DPR 
register is accessed using 8-bit addressing, 
up to 256 bytes can be accessed by direct 
addressing.

H�ff ffff

H�ff ff54

H�ff 0000

H�00 ffff

H�00 0000

H�00 00ff

H�00 0180

H�00 0190

H�00 0200

@ -AL 0
@ -ro ROM_AREA=0xFF8000/0xFFFFFF
@ -ra RAM_AREA=0x000100/0x000780

@ -sc INIT/WORD+DATA/WORD+DIRDATA/PAGE+DIRINIT/WORD
+STACK/WORD=RAM_AREA

@ -sc CODE/BYTE+DCONST/BYTE+DIRCONST/BYTE=ROM_AREA
@ -rg 0
@ -m *:¥softune¥***¥direct_**.mp1

@ -pl 60
@ -pw 132

@ -alin *:¥softune¥***¥direct_**¥LST¥
@ -alout *:¥softune¥***¥direct_**¥LST¥
@ -na

@ -Xals
@ -Xalr

@ -w 1
@ -g
@ -cwno

@ -a
@ -cpu MB90672

@ -o *:¥softune¥***¥direct_**¥ABS¥direct_**.abs
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CHAPTER 13  MAPPING VARIABLES QUALIFIED WITH THE _ _direct TYPE QUALIFIER
Figure 13.2-3  Mapping Variables Qualified by the _ _direct Type Qualifier (Large Model)

<Notes>

The fcc907 does not provide a function for calculating the total size of variables qualified by
the _ _direct type qualifier and outputting error messages.  If the total variable size exceeds
256 for the whole system, an error message is output during linkage.

[Tip]

Softune C Analyzer:

The Softune C Analyzer checks the reference relationships of variables in a specified
module, and displays the candidates for _ _direct type qualifier declaration in descending
order of number of references.  The number of generated candidates can be reduced by
specifying an upper limit for the number of _ _direct type qualifier declarations.  This check
function is helpful in determining the variables for qualification by the _ _direct type qualifier.

DIRDATA

DIRINIT

DATA_AA

INIT_AA

DATA_BB

INIT_BB

DIRCONST

DCONST_AA

DTRANS

DCLEAR

CODE

CODE_AA

CODE_BB

DCONST_BB

DPR

DTB

SSB

USB

STACK

H'ff bank H'fe bank H'fd bank

H'01 bankH'00 bank

Register 
bank 0

I/O area

@ -AL 0
@ -ro ROM2_AREA=0xFE0000/0xFEFFFF
@ -ro ROM_AREA=0xFF8000/0xFFFFFF
@ -ra RAM_AREA=0x000100/0x000780
@ -ra RAM2_AREA=0x010000/0x01FFFF
@ -ra STACK_AREA=0xFD0000/0xFDFFFF
@ -sc DIRDATA/PAGE+DIRINIT/WORD+DATA_AA/BYTE

+INIT_AA/BYTE=RAM_AREA
@ -sc DATA_BB/BYTE+INIT_BB/BYTE=RAM2_AREA
@ -sc STACK/BYTE=STACK_AREA
@ -sc DCONST_BB/BYTE+CODE_BB/BYTE=ROM2_AREA
@ -sc DIRCONST/BYTE+DCONST_AA/BYTE+DTRANS/BYTE+DCLEAR/BYTE

+CODE/BYTE+CODE_AA/BYTE=ROM_AREA
@ -rg 0
@ -m D:¥softune¥**¥direct_large¥LST¥direct_large.mp1
@ -pl 60
@ -pw 132
@ -alin D:¥softune¥**¥direct_large¥LST¥
@ -alout D:¥softune¥**¥direct_large¥LST¥
@ -na
@ -Xals
@ -Xalr
@ -w 1
@ -g
@ -cwno
@ -a
@ -cpu MB90672
@ -o D:¥softune¥**¥direct_large¥ABS¥direct_large.abs
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CHAPTER 14 CREATING AND REGISTERING 
INTERRUPT FUNCTIONS

This chapter provides notes for creation and registration of interrupt functions.

The F2MC-16 family of microcontrollers has various resources for generating 
interrupts.  The generation and processing of interrupts requires to set initial values 
for hardware and software.

14.1  "F2MC-16 Family Interrupts"

14.2  "Required Hardware Settings for Interrupts"

14.3  "Using the _ _interrupt Type Qualifier to Define Interrupt Functions"

14.4  "Setting of Interrupt Vectors"
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CHAPTER 14  CREATING AND REGISTERING INTERRUPT FUNCTIONS
14.1 F2MC-16 Family Interrupts

This section describes interrupt handling in the F 2MC-16 family of microcontrollers.
When an interrupt occurs, the processing being executed is temporarily halted and 
interrupt processing is executed.  When interrupt processing terminates, processing 
resumes from where the interrupt occurred.

■ F2MC-16 Family Interrupts

The F2MC-16 Family has the following four types of interrupts.  When an interrupt occurs, the
processing currently being executed is temporarily halted and control is passed to the interrupt
handler.  When interrupt processing terminates, processing resumes from where the interrupt
occurred.

■ Interrupt handling in the F 2MC-16 Family

This section mainly describes the handling of internal resource interrupts in the F2MC-16 family,
but also covers other types of interrupt handling.

In the F2MC-16 family, when an internal resource interrupt request or external interrupt request
that is allowed occurs during program execution, control passes to the interrupt handler.  The
necessary interrupt handling is executed, the reti instruction is issued, control returns to the
location where the interrupt was detected, and the interrupted processing is resumed.

Figure 14.1-1 "F2MC-16 Family Interrupt Handling" shows interrupt handling in the F2MC-16
family.

The following preparations are required before F2MC-16 family internal resource interrupts and
external interrupts can be handled:

❍ Hardware settings

• Setting of system stack area

• Initialization of internal resources that can generate interrupt requests

• Setting of the resource interrupt level

• Starting of resource operation

• Enabling of internal interrupts in the CPU

Interrupts

Hardware interrupt 
Software interrupt 

Extended intelligent I/O service 
Exception 
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14.1  F2MC-16 Family Interrupts
❍ Creation of interrupt functions

❍ Registration of the interrupt functions in interrupt vectors

Provided the above preparations have been made, a hardware interrupt request will be issued
when an interrupt occurs.  If the interrupt is allowed, the CPU saves the contents of registers
and passes control to the corresponding interrupt processing handler.

Sections 14.2 "Required Hardware Settings for Interrupts" to 14.4 "Setting of Interrupt Vectors"
describe the preparations for interrupt processing.

Figure 14.1-1  F 2MC-16 Family Interrupt Handling

yes

yes

no

no

Interrupt request

Is the interrupt
request level higher than current

interrupt level?

Is the interrupt
enabled (I = 1)?

Save PS, PC, PCB, DTB, ADB, and 
DPR to the stack SSP points to.

Switch to system stack (S    1).

Fetch entry address of interrupt 
processing program from interrupt 
vector.

Set ILM to received interrupt level.

Execute interrupt processing.

Execute reti (interrupt return 
instruction).
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CHAPTER 14  CREATING AND REGISTERING INTERRUPT FUNCTIONS
14.2 Required Hardware Settings for Interrupts

This section describes the required hardware settings for interrupt handling.
The following steps must be performed to enable interrupt handling.
• Setting the stack area
• Initial value of  resources that can generate interrupt requests
• Setting the resource interrupt level
• Starting resource operation
• Enabling CPU interrupts

■ Required Hardware Settings for Interrupts

The following steps must be performed to enable interrupt processing for F2MC-16 family
microcontrollers:

• Setting the system stack area

• Initial value of  resources that can generate interrupt requests

• Setting the resource interrupt level

• Starting resource operation

• Enabling CPU interrupts

Sections 14.2.1 "Setting the System Stack Area" to 14.2.5 "Enabling CPU Interrupts" describe
the required initializations.
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14.2  Required Hardware Settings for Interrupts
14.2.1 Setting the System Stack Area

This section describes how to set the system stack areas used for interrupt handling.
When an interrupt occurs, the CPU automatically saves the contents of the registers 
on the system stack.

■ Setting the System Stack

When an allowed F2MC-16 family interrupt occurs, the CPU saves the contents of the registers
shown below on the stack, and then executes interrupt processing.

• A register 

• DPR register 

• ADB register 

• DTB register 

• PCB register 

• PC register 

• PS register

Figure 14.2-1  Registers Saved to the System Stack when an Interrupt Occurs

The system stack must be initialized as follows to create a system in which interrupt processing
can be executed:

• Allocation of system stack area

• Setting the system stack pointer (SSP)

• Specifying the address of stack allocation for the linker

Register values cannot be set directly in a C program.  An assembler must be used to set the
system stack pointer.  Use a startup routine to allocate the system stack area and initialize the
system stack pointer (SSP). 

In addition, specify the mapping addresses of the system stack at linkage. 

Figure 14.2-2 "Setting the System Stack Area" shows an example of using a startup routine to
allocate the system stack area and setting the system stack pointer.

PC

PS

high

low

AH

AL

DPR ADB

DTB PCB

MSB LSB

A register 
DPR register 
ADB register 
DTB register 
PCB register
PC register (for storing the address of 
the next instruction to be executed) 
PS register

SSP before interrupt
occurrence

SSP after interrupt
occurrence

Registers saved on the system stack when an interrupt occurs
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CHAPTER 14  CREATING AND REGISTERING INTERRUPT FUNCTIONS
Figure 14.2-2  Setting the System Stack Area 

Areas of 256 bytes have been allocated for the 
system stack and user stack defining the STACK 
section. 

The bank containing the symbol SSTACK_TOP 
in the STACK section has been set in the SSB.  
The address of the symbol SSTACK_TOP has 
been set in the SP.

;==========================================================================

; Sample program for initialization (small model)

;--------------------------------------------------------------------------

.PROGRAM start

.TITLE start

;--------------------------------------------------------------------------

; definition to stack area

;--------------------------------------------------------------------------

.SECTION STACK, STACK, ALIGN=1

.RES.B 254

SSTACK_TOP:

.RES.B 2

.RES.B 254

USTACK_TOP:

.RES.B 2

;--------------------------------------------------------------------------

; code area

;--------------------------------------------------------------------------

.SECTION CODE, CODE, ALIGN=1

__start:

;--------------------------------------------------------------------------

; set system stack

;--------------------------------------------------------------------------

AND CCR, #0x20

MOV A, #BNKSYM SSTACK_TOP

MOV SSB, A

MOVW A, #SSTACK_TOP

MOVW SP, A

AND CCR, #0x00DF

; end: bra end

.END __start
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14.2  Required Hardware Settings for Interrupts
14.2.2 Initializing Resources

This section describes the initial settings for resources that generate interrupt 
requests.  This initialization values must be defined dependent on the used resources.

■ Initializing Resources

Before an interrupt can be generated, the resources that generate interrupt requests must be
initialized.

The internal resources that can request hardware interrupts for an F2MC-16 family
microcontroller have an interrupt enable bit and interrupt request flag in a register.  First, the
resources that can execute interrupt processing must be initialized. The settings of the interrupt
enable flag and interrupt level depend on the system to be created.  Initialize each resource as
required.

Figure 14.2-3 "Initializing Internal Resources (for interrupts using 16-bit timer)" shows the
registers for the 16-bit reload timer, which is an internal resource. These registers must be
initialized for interrupt operations that uses the 16-bit reload timer. See Figure 14.2-10 "Example
of Initializing Interrupt Processing" for an example of an initialization program for interrupt
processing that uses the 16-bit reload timer.

Figure 14.2-3  Initializing Internal Resources (for interrupts using 16-bit reload timer)

For information about the registers for each of its internal resources, refer to the hardware
manual for the specific product.

91112131415 8

CLR1

0123456789101112131415

CLR0 MOD2 MOD1

7 6

CUTE

5

OUTL

4 3 2 1 0

RELO INTE UF CNTE TRG

10

MOD0

Interrupt handling using the 16-bit reload timer 
     -  Timer control status register (TMCSR) 

Free

Interrupt enable bit
1:  Interrupt enabled 
0:  Interrupt disabled

Timer interrupt request flag

This flag is set to 1 when the counter value 
underflows from 0 to h'ffff. 

If the INTE bit is 1 and interrupts allowed, 
an interrupt request will be issued when the UF bit is set to 1. 

-  16-bit timer register (TMR) and 16-bit reload register (TMRLR)

TMR (at read):  Count value of the 16-bit timer 
TMRLR (at write):  Retains the initial value of the count.
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CHAPTER 14  CREATING AND REGISTERING INTERRUPT FUNCTIONS
14.2.3 Setting Interrupt Control Registers

Set the values of the interrupt control register after the resources that generate 
interrupt requests have been initialized.

■ Setting Interrupt Control Registers

The values of the interrupt control registers must be set after the resources that generate
interrupt requests have been initialized.

An interrupt level setting register is allocated to each internal resource. The interrupt level set in
the interrupt level setting register determines the priority of the interrupts that are enabled.

Figure 14.2-4 "Bit Configuration of an F2MC-16 Family Interrupt Level Setting Register" shows

the bit configuration of the F2MC-16 Family interrupt control registers. 

At a reset, the interrupt control registers are initialized to interrupt prohibited level 7.  When an
interrupt request is issued in a resource, the interrupt controller informs the CPU of the value
corresponding to the interrupt.  Set a value based on the system to be created. 

For the F2MC-16 Family, interrupt control registers are mapped between addresses 0x0000b0
and 0x0000bf in the I/O area.  (See Figure 12.1-2 "I/O Register Mapping in the MB90670/675
Series")

Table 14.2-1 "Relationship between Interrupt Sources, Interrupt Level Setting Registers, and
Interrupt Vectors for MB90675" shows the relationship between interrupt sources and interrupt
control register bits.  For information about the interrupt control registers, refer to the hardware
manual of the specific product.

Figure 14.2-4  Bit Configuration of an F 2MC-16 Family Interrupt Level Setting Register

Bit 7 Bit 0

ICS3 ICS2 ICS1
/S1 ISE IL2 IL1 IL0ICS0

/S0

IL2 IL1 IL0

0 0 0

0 0 1

1 1 0

1 1 1

Extended intelligent
I/O service channel
select bits

Interrupt level setting bits

Extended intelligent I/O service enable bit 
             0:  The extended intelligent I/O service does not operate. 
             1:  The extended intelligent I/O service operates.

Interrupt request level

At a reset, the interrupt request level 
is initialized to 7 (no interrupt).

No interrupt

High

Low
154



14.2  Required Hardware Settings for Interrupts
Table 14.2-1  Relationship between Interrupt Sources, Interrupt Level Setting Registers, and Interrupt 
Vectors for MB90675

Interrupt source
Interrupt vector Interrupt level setting register

Number Address ICR Address

Reset #08 h’FFFFDC - -

INT9 instruction #09 h’FFFFD8 - -

Exception #10 h’FFFFD4 - -

External interrupt #0 #11 h’FFFFD0
ICR0

h’0000B0

External interrupt #1 #12 h’FFFFCC

External interrupt #2 #13 h’FFFFC8 ICR1 h’0000B1

External interrupt #3 #14 h’FFEFC4

OCU#0 #15 h’FFEFC0 ICR2 h’0000B2

OCU#1 #16 h’FFEFBC

OCU#2 #17 h’FFEFB8 ICR3 h’0000B3

OCU#3 #18 h’FFEFB4

OCU#4 #19 h’FFEFB0 ICR4 h’0000B4

OCU#5 #20 h’FFFFAC

OCU#6 #21 h’FFFFA8 ICR5 h’0000B5

OCU#7 #22 h’FFFFA4

24-bit free run timer overflow #23 h’FFEFA0 ICR6 h’0000B6

24-bit free run timer intermediate bit #24 h’FFEF9C

ICU#0 #25 h’FFEF98 ICR7 h’0000B7

ICU#1 #26 h’FFEF94

ICU#2 #27 h’FFEF90 ICR8 h’0000B8

ICU#3 #28 h’FFEF8C

16-bit reload timer #0/PPG0 #29 h’FFFF88 ICR9 h’0000B9

16-bit reload timer #1/PPG1 #30 h’FFFF84

A/D converter measurement #31 h’FFFF80 ICR10 h’0000BA

Wake-up interrupt #33 h’FFEF78 ICR11 h’0000BB

Time-base timer interval interrupt #34 h’FFEF74

UART1 send completion #35 h’FFEF70 ICR12 h’0000BC

UART0 send completion #36 h’FFEF6C

UART1 receive completion #37 h’FFEF68 ICR13 h’0000BD

I2C interface #38 h’FFEF64

UART1 receive completion #39 h’FFEF60 ICR14 h’0000BF

Delayed interrupt occurrence module #42 h’FFEF54 ICR15 h’0000BF
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CHAPTER 14  CREATING AND REGISTERING INTERRUPT FUNCTIONS
14.2.4 Starting Resource Operation

After the resources that process interrupts have been initialized and the 
corresponding interrupt control registers have been set, the resources start operation.

■ Starting Resource Operation

Each resource register has a bit for enabling or disabling interrupt processing and a bit for
starting operation of the resource.  Setting these bits enables interrupts for the corresponding
resource and starts operation of the resource.

Figure 14.2-5 "Starting Internal Resource Operation (for interrupt processing using the 16-bit
reload timer)" shows how to start the operation of the 16-bit reload timer, which is an internal
resource. See Figure 14.2-10 "Example of Initializing Interrupt Processing" for an example of an
initialization program for interrupt processing that uses the 16-bit reload timer.

Figure 14.2-5  Starting Internal Resource Operation (for interrupt processing using the 16-bit reload 
timer)

Some resources generate interrupt requests as soon as the resource start.  As a result, an
interrupt can occur before processing for interrupts has been completely initialized, with
unpredictable results.  Therefore, initialize resources and start their operation in a manner
appropriate for the system.

For information about the registers of respective resources, refer to the hardware manual of the
specific product.

Interrupt processing using the 16-bit reload timer

-  Timer control status register (TMCSR)

Timer count enable bit Software trigger bit

91112131415 8

CLR1 CLR0 MOD2 MOD1

7 6

CUTE

5

OUTL

4 3 2 1 0

RELO INTE UF CNTE TRG

10

MOD0

Writing 1 to the CNTE and TRG bits loads the reload register contents to the counter 
and starts the count operation. 
When the counter value underflows from h'0000 to h'ffff, the UF bit is set to 1.  If the 
INTE bit has been set to 1 at this time, an interrupt request will be issued.

Free

1:  Activation trigger wait 
0:  Count operation disabled

Enabled only when CNTE = 1. 
Writing 1 to this bit activates the 
software trigger, loads the reload 
register contents to the counter, 
and starts the count operation.
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14.2  Required Hardware Settings for Interrupts
14.2.5 Enabling CPU Interrupts

This section describes how to set CPU interrupts to be enabled.
The I flag and ILM value in the CPU determine the interrupt level allowed for the 
system.

■ Enabling CPU Interrupts

Once the resources for interrupt handling have been set up, the settings for the receiving CPU
must be made.

For the F2MC-16 Family, the interrupt permission flag in the program status register (PS) and
the value of the interrupt level mask register (ILM) determine the hardware interrupt level
allowed for the entire system.

Figure 14.2-6 "Bit Configuration of PS Register" shows the bit configuration of the PS register.

ILM indicates the interrupt level that is currently allowed.  If an interrupt request of a higher level
than that indicated by the ILM register occurs, interrupt processing will be executed.  Level 0 is
the highest level, and level 7 is the lowest level.  When the system is reset, the lowest level (7)
is set.

Figure 14.2-6  Bit Configuration of PS Register

For the fcc907, the _ _set_il( ) function and #pragma ilm/noilm can be used to set the interrupt
level.

CVZNTSI

Register bank pointer (RP) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 Condition code register (CCR) 

Interrupt level setting

B0B1B2B3B4ILM0ILM2 ILM1

IL2 IL1 IL0 Allowed interrupt
level

0 0 0

High

Low

Interrupt disabled

0 0 1

1 1 0

1 1 1

The ILM value is used to determine the interrupt 
level allowed for the entire system.  If an interrupt 
request with a level higher than that indicated by 
the ILM occurs and the I flag has been set to 1 to 
allow interrupts, interrupt processing will be 
executed.

Free

Interrupt level mask register (ILM) Interrupt permission flag 
      0:  Interrupt disabled 
      1:  Interrupt enabled
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CHAPTER 14  CREATING AND REGISTERING INTERRUPT FUNCTIONS
■ Using _ _set_il( ) to Set the Interrupt Level in a Function

Because _ _set_il( ) converts the ILM register values into an argument, an interrupt level can be
set anywhere in a function.

Figure 14.2-7 "Using _ _set_il( ) to Set the Interrupt Level in a Function" shows a function for
which an interrupt level has been set using _ _set_il( ).

Function main( ) calls the built-in function _ _set_il( ) at line 21.  Because 7 is specified as an
argument, code that sets 7 in the ILM register is generated.

The _ _set_il( ) can be set at an arbitrary location in a function to generate a code that changes
the interrupt level.

Figure 14.2-7  Using _ _set_il( ) to Set the Interrupt Level in a Function

void  _ _set_il (interrupt-level) ;

The interrupt function __set_il( ) 
is called to change the interrupt 
level in the function main( ). 
The interrupt level for the entire 
system can thus be changed at 
an arbitrary location in a function. 
In this example, __set_il(7) sets 
the interrupt level for the entire 
system to 7.

15 void main(void)

16 {

17 init_led();

18

19 init_timer();

20

21 _ _set_il(7);
22

23 flag = 0x01;

24

25 _ _EI();
26

27 while(1){}

28

29 }

34 void init_timer(void)
35 {
36 IO_ICR09.byte = 0x00;
37
38 IO_TMR0 = 0x5000;
39
40 IO_TMCSR0.word = 0x88b;
41
42 }

_main:

LINK #0

;;;; {

;;;; init_led();
CALL _init_led

;;;; init_timer();

CALL _init_timer

;;;; _ _set_il(7);

MOV ILM, #7

;;;; flag = 0x01;

MOVN A, #1

MOV _flag, A

;;;; _ _EI();

OR CCR, #64

;;;; while(1){}

L_24:

;;;; while(1){}

BRA L_24

;;;; }

UNLINK

RET
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14.2  Required Hardware Settings for Interrupts
■ Using #pragma ilm/noilm to Set the Interrupt Level in a Function

The #pragma ilm directive can set the interrupt level for each function.  When an interrupt level
is set using #pragma ilm, code that sets the interrupt level is generated before processing of the
function is started.

When changing the interrupt level of a function with #pragma ilm, place #pragma ilm before the
function whose interrupt level is to be changed.

Use #pragma noilm to terminate the specification for changing the interrupt level of a function.

Figure 14.2-8 "Using #pragma ilm/noilm to Set the Interrupt Level in a Function" shows a
function whose interrupt level is changed using #pragma ilm/noilm.  In this example, interrupt
level 7 is set.  That is, when the processing of function main( ) starts, code that sets the ILM to 7
is generated.  Because #pragma noilm has been specified after function main( ), code that sets
an interrupt level will not be generated when the processing for function init_timer( ) defined
from line 34 starts.

Figure 14.2-8  Using #pragma ilm/noilm to Set the Interrupt Level in a Function

[Tips]

Softune C Checker:

The Softune C Checker will output the message "The interrupt level setting function has
been used" at the location where the _ _set_il( ) function or #pragma ilm/noilm has been
specified.  The fcc896 and fcc911 also support _ _set_il( ) and #pragma ilm/noilm.  When
porting, check this message to see whether the function should be used in the new program.

#pragma ilm (interrupt-level) ;

#pragma noilm

A code that changes the 
interrupt level is generated at 
the beginning of function 
main( ). 
In this example, function 
main( ) is executed with 
interrupt level 7.

13

14 #pragma ilm(7)
15

16 void main(void)

17 {

18 init_led();

19

20 init_timer();

21

22

23

24 flag = 0x01;

25

26 _ _EI();
27

28 while(1){}

29

30 }

31

31 #pragma noilm

34 void init_timer(void)
35 {
36 IO_ICR09.byte = 0x00;
37
38 IO_TMR0 = 0x5000;
39
40 IO_TMCSR0.word = 0x88b;
41
42 }

_main:

MOV ILM, #7
LINK #0

;;;; {

;;;; init_led();

CALL _init_led

;;;; init_timer();

CALL _init_timer

;;;; flag = 0x01;

MOVN A, #1

MOV _flag, A

;;;; _ _EI();

OR CCR, #64

;;;; while(1){}

L_24:

;;;; while(1){}

BRA L_24

;;;; }

UNLINK
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CHAPTER 14  CREATING AND REGISTERING INTERRUPT FUNCTIONS
■ Using the I Flag to Enable Interrupts for the Entire System

Finally, after all of the initializations for interrupts have been set, the I flag is set.

When the I flag is 1, interrupts are enabled for the entire system.  Resetting clears the I flag to 0.
Although interrupts that are higher than the level set by the ILM register are enabled, whether
the interrupts are actually process depends on the status of the I flag.

In the fcc907, interrupts can be disabled by clearing the I flag to 0 with _ _DI( ), as follows.

Interrupts can be enabled by setting the I flag to 1 with _ _EI( ), as follows.

Figure 14.2-9 "Example of Using _ _EI( ) in a Function to Enable Interrupts" shows an example
of a function that uses _ _EI( ) to enable system interrupts.

Figure 14.2-9  Example of Using _ _EI( ) in a Function to Enable Interrupts

Figure 14.2-10 "Example of Initializing Interrupt Processing" shows an example of an
initialization program for interrupt processing that uses the 16-bit reload timer.

In this example, function main( ) calls function init_timer( ), which initializes the 16-bit reload
timer.  On line 36, function init_timer( ) sets the highest interrupt level (0) in the 16-bit reload
timer interrupt control register.  Then, on line 38, reload value 0x5000 is set in the IO_TMR0
register.  Finally, 0x088b is set in the IO_TMCSR0 register and operation of the 16-bit reload
timer starts when initialization starts.

When initialization of the 16-bit reload timer terminates, control is returned to function main( ).
System interrupts are then enabled after _ _set_il(7) sets the interrupt level of the entire system.
Interrupts using the 16-bit reload timer are thus enabled.

void  _ _DI(void) ;

void  _ _EI(void) ;

Function main( ) calls the
built-in function _ _EI( ),
which enables interrupts for
the entire system.
Interrupts for the entire
system are enabled.

15 void main(void)

16 {

17 init_led();

18

19 init_timer();

20

21 _ _set_il(7);
22

23 flag = 0x01;

24

25 _ _EI();
26

27 while(1){}

28

29 }

34 void init_timer(void)
35 {
36 IO_ICR09.byte = 0x00;
37
38 IO_TMR0 = 0x5000;
39
40 IO_TMCSR0.word = 0x88b;
41
42 }

_main:

LINK #0

;;;; {

;;;; init_led();

CALL _init_led
;;;; init_timer();

CALL _init_timer

;;;; _ _set_il(7);

MOV ILM, #7

;;;; flag = 0x01;

MOVN A, #1

MOV _flag, A

;;;; _ _EI();

OR CCR, #64

;;;; while(1){}

L_24:

;;;; while(1){}

BRA L_24

;;;; }

UNLINK

RET
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14.2  Required Hardware Settings for Interrupts
Figure 14.2-10  Example of Initializing Interrupt Processing

<Notes>

Because a reset clears the I flag to 0, execute _ _EI( ) to enable interrupts of the entire
system after the hardware of the system to be created has been initialized.

[Tip]

Softune C Checker:

The Softune C Checker will output messages indicating that the interrupt mask setting and
interrupt mask release functions have been used at the locations where _ _EI( ) and _ _DI( )
are used.  The fcc896 and fcc911 also support the _ _EI( ) and _ _DI( ) functions.  When
porting, check this message to see whether these functions should also be used in the new
program system.

The interrupt level is set in the control 
register in the interrupt controller.

15 void main(void)
16 {
17 init_led();
18
19 init_timer();
20
21 _ _set_il(7);
22
23 flag = 0x01;
24
25 _ _EI();
26
27 while(1){}
28
29 }

;-------begin_of_function

.GLOBAL _init_timer

_init_timer:

LINK #0

;;;; {

;;;; IO_ICR09.byte = 0x00;

MOVN A, #0

MOV I:_IO_ICR09, A

;;;; IO_TMR0 = 0x5000;

MOVW I:_IO_TMR0, #20480

;;;; IO_TMCSR0.word = 0x88b;

MOVW I:_IO_TMCSR0, #2187

34 void init_timer(void)
35 {
36 IO_ICR09.byte = 0x00;
37
38 IO_TMR0 = 0x5000;
39
40 IO_TMCSR0.word = 0x88b;
41
42 }

The reload value is set in the 16-bit reload register, and 
the timer operation starts.
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CHAPTER 14  CREATING AND REGISTERING INTERRUPT FUNCTIONS
14.3 Using the _ _interrupt Type Qualifier to Define Interrupt 
Functions

Sections 14.2.1 to 14.2.4 described the initialization required to execute interrupts. 
However, interrupt processing cannot be executed simply by initialization.  Before 
interrupt processing can be executed, interrupt processing functions corresponding to 
the interrupts must be created.

■ Using the _ _interrupt Type Qualifier to Code Interrupt Functions

When an interrupt allowed by an F2MC-16 family microcontroller is issued, the following
procedure is used to execute interrupt processing:

1. The PS, PC, PCB, DTB, ADB, DPR, and A (12 bytes total) are saved on the stack.

2. The ILM register is updated to the level of the received interrupt.

3. The PS register S flag is set (the system stack is used).

4. Instructions starting from the address indicated by the corresponding interrupt vector are
executed.

Figure 14.3-1  Executing an Interrupt Function

As shown in Figure 14.3-1 "Executing an Interrupt Function", the hardware automatically saves
the contents of registers and passes control to an interrupt processing routine when an interrupt
occurs.

When an interrupt processing routine is coded in assembly language, the reti instruction is
issued at the end of the interrupt processing routine.  As a result, the PS, PC, PCB, DTB, ADB,
DPR, and A register values that were saved on the stack are restored and processing resumes
from where the interrupt occurred.

When an interrupt processing function is coded using the fcc907, the interrupt function must be
qualified with the _ _interrupt type qualifier, as shown in Figure 14.3-2 "Using the _ _interrupt
Type Qualifier to Define an Interrupt Function".  Based on the coding, the fcc907 compiles the

PC

PS

high

low

AH

AL

DPR ADB

DTB PCB

MSB LSB

When interrupt processing terminates, the register values saved 
on the stack are restored to the registers and processing 
resumes from where the interrupt occurred.

Interrupt request

Interrupt processing coded in C

SSP before 
interrupt 
occurrence

SSP after 
interrupt 
occurrence

When an interrupt occurs, the 
hardware saves the contents of the 
PS, PC, PCB, DTB, ADB, DPR, and A 
on the system stack and then 
executes the corresponding interrupt 
function. 
The system stack is used during 
interrupt processing.
162



14.3  Using the _ _interrupt Type Qualifier to Define Interrupt Functions
specified function as an interrupt function.

Figure 14.3-2  Using the _ _interrupt Type Qualifier to Define an Interrupt Function

When an interrupt function qualified by the _ _interrupt type qualifier is executed, the values of
all of the registers that are used in the function are saved.  When the interrupt function
terminates, the saved register values are restored and the reti instruction is issued.  Issuing the
reti instruction restores the PS, PC, PCB, DTB, ADB, and DPR register values that were saved
on the stack and restarts processing from where the interrupt occurred.

Figure 14.3-3 "Example of an Interrupt Function Using the _ _interrupt Type Qualifier" shows an
example of an interrupt function.

When function int_timer( ) qualified by the _ _interrupt type qualifier is called, the value of the
register (the RW0 register in this case) is saved on the stack when the function starts.

When the function terminates, the saved register value is restored and the reti instruction is
issued.  The reti instruction restores the PS, PC, PCB, DTB, ADB, DPR, and A register values
that were saved on the stack and restarts processing from where the interrupt occurred.

Figure 14.3-3  Example of an Interrupt Function Using the _ _interrupt Type Qualifier

_ _ interrupt 

}

Can be omitted. void must always be specified.

[_ _nosavereg] void   function-name(void) {

The interrupt processing program is coded in C.

When the function starts, the values of all registers used 
in the function (the RW0 register in this case) are saved 
and processing is executed. 

When the function terminates, the saved register values 
are restored and the reti instruction is issued to terminate 
the interrupt function. 
The reti instruction restores the register values saved on 
the system stack and restarts processing from where the 
interrupt occurred.

The __interrupt type modifier is used to define 
function int_timer( ) as an interrupt function.

The interrupt level 
is changed using 
#pragma ilm(0).

;-------begin_of_function

.GLOBAL

_int_timer

_int_timer:

MOV ILM, #0
LINK #2
PUSHW (RW0)

;;;; }
POPW (RW0)
UNLINK
RETI

#pragma ilm(0)

_ _interrupt void int_timer(void)
{

int i;

IO_TMCSR0.bit.UF = OFF;

IO_PDR0.byte = OFF;

switch (flag){
case 0x01: IO_PDR1.byte = LED_pat[0];

break;

case 0x80: IO_PDR1.byte = LED_pat[7];
}

IO_PDR0.byte = flag;

if(!(flag<<=1))
flag = 0x01;

for(i = 0; i < 100; i++);

IO_TMCR.byte = 0x03;

}

#pragma noilm
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CHAPTER 14  CREATING AND REGISTERING INTERRUPT FUNCTIONS
■ Coding of Interrupt Function That Switches the Register Bank without Saving Work Registers

F2MC-16 family microcontrollers can use up to 32 register banks.  Because the register bank
that will be used can be changed when an interrupt function starts, it becomes possible to
create an interrupt function that is faster than a function that saves work registers.

When writing an interrupt function that switches to a new register bank, #pragma register/
noregister must be used to switch register banks and the interrupt function must be coded using
both the _ _interrupt type qualifier and _ _nosavereg type qualifier.

When a function is qualified by the _ _nosavereg type qualifier, the values of the registers are
not saved.  This applies even if registers are used in the function.

Figure 14.3-4 "Changing Register Banks When an Interrupt Function Is Executed" shows an
example of an interrupt function for which the _ _nosavereg type qualifier is specified.

#pragma register(1) is specified before function int_timer( ) is defined.

When function int_timer( ) qualified by the _ _interrupt type qualifier and _ _nosavereg type
qualifier is called, the code for switching the register bank to be used is output.  When the
register bank is switched, an area for the local variables used in the interrupt function is
allocated.

When the function terminates, the saved registers are restored, and then the reti instruction is
issued to restore the PS register value that was saved when the interrupt occurred.  Control
then returns to the register bank that was being used before the interrupt occurred.

Figure 14.3-4  Changing Register Banks When an Interrupt Function Is Executed

<Notes>

For a function qualified by the _ _interrupt type qualifier, always specify void as the function
type.

When the interrupt processing terminates with the reti instruction, the registers that were
saved to the system stack when the interrupt occurred are restored.  Saving the register
values enables the interrupted processing to be restarted.  Because the registers are
restored after the interrupt function returns a return value and terminates, the return value
cannot be accessed.  In addition, even though the return value has been placed on the
stack, the location of the return value cannot be determined by the function gaining control
after interrupt processing terminates because the stack returns to its pre-interrupt state by
execution of the reti instruction.  For this reason, the return value cannot be accessed.  To

When the function starts, processing is executed 
without saving the values of the registers used in the 
function. 

The reti instruction is issued to terminate the interrupt 
function.  The reti instruction restores the register values 
saved on the system stack and restarts processing from 
where the interrupt occurred.

The __interrupt type modifier is used to define 
function int_timer( ) as an interrupt function.

Using register bank 
is changed by 
#pragma register(1).

#pragma ilm(0)

_ _interrupt _ _nosavereg void int_timer(void)
{

int i;

IO_TMCSR0.bit.UF = OFF;

IO_PDR0.byte = OFF;

switch (flag){
case 0x01: IO_PDR1.byte = LED_pat[0];

break;

case 0x80: IO_PDR1.byte = LED_pat[7];
}

IO_PDR0.byte = flag;

if(!(flag<<=1))
flag = 0x01;

for(i = 0; i < 100; i++);

IO_TMCR.byte = 0x03;

}

#pragma noilm

;-------begin_of_function

.GLOBAL _int_timer

_int_timer:

MOV ILM, #0

LINK #2

;;;; }
UNLINK
RETI
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14.3  Using the _ _interrupt Type Qualifier to Define Interrupt Functions
prevent such wasteful processing, type void must be specified for the interrupt function.  If
the processing results of an interrupt function are required, define an external variable where
the processing results can be saved and accessed when necessary.

[Tip]

Softune C Checker processing:

The Softune C Checker will output a warning message for the location where the _ _interrupt
type qualifier is specified indicating that a type qualifier for coding an interrupt function is
used.  The fcc896 and fcc911 support the _ _interrupt type qualifier.  When porting, check
this message to see whether the function should also be used in the new program system.
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CHAPTER 14  CREATING AND REGISTERING INTERRUPT FUNCTIONS
14.4 Setting of Interrupt Vectors

This section describes how to use #pragma intvect/defvect to register an interrupt 
function in an interrupt vector.
Using #pragma intvect enables a created interrupt function to be registered in an 
interrupt vector.

■ Using #pragma intvect/defvect to Register Interrupt Functions

When the hardware settings for executing interrupt processing and the definitions of the
interrupt functions for the actual operation have been completed, the last step is to register the
created interrupt functions.

The F2MC-16 family provides interrupt vectors at addresses 0xFFFC00 to 0xFFFFFF.
Registering the required interrupt processing functions in this area enables the required interrupt
processing to be executed when an interrupt occurs.

See Table 14.2-1 "Relationship between Interrupt Sources, Interrupt Level Setting Registers,
and Interrupt Vectors for MB90675" for the relationship between interrupt sources, interrupt
control registers, and interrupt vectors.

The fcc907 uses #pragma intvect as follows to register interrupt functions.

Figure 14.4-1  Using #pragma intvect to Register an Interrupt Processing Function

Figure 14.4-1 "Using #pragma intvect to Register an Interrupt Processing Function" shows an
example of using #pragma intvect to register an interrupt processing function.

pragma intvect   interrupt-function-name   interrupt-vector-number

An interrupt processing function is set in 
the interrupt vector corresponding to the 
specified interrupt. 

The default interrupt function is set in the 
interrupt vectors for which no interrupt 
processing functions have been specified.

.SECTION INTVECT, DATA,

LOCATE=H'FFFC00

.DATAB.L 226, _dummy

.DATA.L _int_timer

.DATAB.L 20, _dummy

.DATA.E __start

.DATA.B 0

.DATAB.L 8, _dummy

.GLOBAL _dummy

.GLOBAL _int_timer

.GLOBAL __start

.END

extern __interrupt void _start(void);

extern __interrupt void int_timer(void);

extern __interrupt void dummy(void);

#pragma intvect _start 8 0

#pragma intvect int_timer 29

#pragma defvect dummy
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14.4  Setting of Interrupt Vectors
In this example, the startup routine start( ) is registered in interrupt vector 8 and the 16-bit reload
timer interrupt processing function int_timer( ) is registered in interrupt vector 29.

When #pragma intvect is executed, the interrupt vector table INTVECT, which is allocated
starting at address h’fffc00, is generated. The interrupt vectors that have not been assigned a
vector number by #pragma intvect are filled with zeros.  When #pragma defvect is executed, the
specified interrupt function is set in all the vectors that that have been filled with 0.  In the
example shown in Figure 14.4-1 "Using #pragma intvect to Register an Interrupt Processing
Function", default interrupt function dummy is specified with #pragma defvect.  Function dummy
is registered in all interrupt vectors except interrupt vector 8 and 29.

<Notes>

When using #pragma intvect to set an interrupt function in a vector table, always declare
access for a function for which the _ _interrupt type qualifier has been specified before you
code #pragma intvect.  The fcc907 will output a warning message if the _ _interrupt type
qualifier is omitted.

Registering of a function in an interrupt vector with #pragma intvect/defvect is only allowed in
one module.  If the function is registered in more than one module, an error message
indicating that a section name has been specified multiple times may be output during
linking.
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PART IV MAPPING OBJECTS EFFECTIVELY

This part describes how to effectively map created programs into memory.
When the fcc907 is used, the memory model to be selected depends on the scale of 
the system to be created.  How objects are mapped into memory depends on the 
selected memory model.  This part describes the following items:
• Memory models and object efficiency
• Mapping variables qualified by the const type qualifier
• Mapping programs in which the code area exceeds 64 Kbytes
• Mapping programs in which the data area exceeds 64 Kbytes

CHAPTER 15  "MEMORY MODELS AND OBJECT EFFICIENCY"

CHAPTER 16  "MAPPING VARIABLES QUALIFIED WITH THE TYPE 
QUALIFIER CONST"

CHAPTER 17  "MAPPING PROGRAMS IN WHICH THE CODE AREA 
EXCEEDS 64 Kbytes"

CHAPTER 18  "MAPPING PROGRAMS IN WHICH THE DATA AREA 
EXCEEDS 64 Kbytes"
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CHAPTER 15 MEMORY MODELS AND OBJECT 
EFFICIENCY

This chapter describes the memory models that can be used by the fcc907, including 
object efficiency thereof.
• Small model
• Medium model
• Compact model
• Large model

15.1  "Four Memory Models"

15.2  "Memory Models and Object Efficiency"
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CHAPTER 15  MEMORY MODELS AND OBJECT EFFICIENCY
15.1 Four Memory Models

This section describes the memory models that can be used by the fcc907. 
The fcc907 has small-, medium-, compact-, and large-size memory models based on 
memory sizes capable of being handled.

■ Memory Models of the fcc907

The fcc907 has small-, medium-, compact-, and large-size memory models as shown in Figure
15.1-1 "fcc907 Memory Models" based on memory sizes capable of being handled.

Figure 15.1-1  fcc907 Memory Models

Table 15.1-1 "fcc907 Memory Models" lists the relationship between the memory models and
memory areas that are handled.  In addition, Table 15.1-2 "fcc907 Memory Models and
Pointers" lists the relationship between the memory models and pointers at access.-

code

code

data

user
stack

system
stack

data
+

stack

64KB

64KB

64KB 64KB

64KB *n

64KB *n

Small model Large model

Compact model

Medium model

Table 15.1-1  fcc907 Memory Models

Small model Medium model Compact 
model

Large model

Data area One bank One bank Multiple banks Multiple banks

System stack One bank One bank

User stack One bank One bank

Code area One bank Multiple banks One bank Multiple banks
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15.1  Four Memory Models
❍ Small model

For the code and data areas, 16-bit addressing objects are generated. 

Specify a small model for a system that has code and data areas each within one bank (64
Kbytes).  Then, when a function is accessed, the bank pointed to by the PCB is accessed using
16-bit addressing.  When a variable is accessed, the bank pointed to by the DTB is accessed
using 16-bit addressing.

❍ Large model

For the code and data areas, 24-bit addressing objects are generated. 

Specify a large model for a system that uses multiple banks for the code and data areas.  The
data and code areas can be allocated at arbitrary locations in the memory space without being
related to the PCB and DTB values.  As a result, functions and variables are accessed using 24-
bit addressing.

❍ Medium model

When data is accessed, an object of 16-bit addressing is generated.  When code is accessed, a
24-bit addressing object is generated. 

Specify a medium model for a system that has a data area within one bank (64 Kbytes).  Then,
when a variable is accessed, the bank pointed to by the DTB is accessed using 16-bit
addressing.

❍ Compact model

When data is accessed, a 24-bit addressing object is generated.  When code is accessed, a 16-
bit addressing object is generated. 

Specify a compact model for a system that has a code area within one bank (64 Kbytes).  Then,
when a function is accessed, the bank pointed to by the PCB is accessed using 16-bit
addressing.

Table 15.1-2  fcc907 Memory Models and Pointers

Memory model Pointer to function Pointer to variable

Small model 16 bits

Medium model 24 bits 16 bits

Compact model 16 bits 24 bits

Large model 24 bits
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CHAPTER 15  MEMORY MODELS AND OBJECT EFFICIENCY
■ Memory Models and Bank Registers

The F2MC-16 Family uses a reset signal to initialize the bank registers.  At this time, the four
registers DTB, ADB, USB, and SSB are initialized to h’00.  The PCB is initialized into the bank
where the routine registered in the reset vector has been mapped.  In addition, at a reset, the
DPR is initialized to h’01. 

For a small- or medium-size model where data is accessed using 16-bit addressing, the three
registers DTB, USB, and SSB must be initialized so as to point to the same bank.  For a small-
or medium-size model, the I/O area has been allocated in the h’00 bank.  Therefore, the three
registers DTB, USB, and SSB are initialized so as to point to the h’00 bank. 

The three registers DTB, USB, and SSB can thus use the values initialized by a reset as is.
Because a reset initializes the DPR to h’01, the DPR must be set to a page on which a variable
qualified by the _ _direct type qualifier has been mapped.

Figure 15.1-2  Initializing the Bank Registers (for a Small Model)

For a compact or large model where the data area is accessed using 24-bit addressing, the
restriction where the three registers are set to h’00 does not apply.  However, a bank in which a
variable qualified by the _ _near type qualifier and a variable qualified by the _ _direct type
qualifier have been mapped must be set in the DTB register.  In addition, a page on which a
variable qualified by the _ _direct type qualifier has been mapped must be set in the DPR
register.  Use the startup routine to initialize these registers to values that match the system to
be created. 

For details on the DTB, DPR, USB, SSP, and PCB registers, refer to the manual of the
respective hardware.

ROM
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RAM
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64KB

64KB

h'ff bank 

h'00 bank

For a small model 

Initialized to h'00 by a reset.

The initial value can be used 
reset as is.

The initial value can be used reset as is.

Initialized to the bank in which the routine registered in the reset vector 
has been mapped.
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Set to a page on which a variable 
qualified by the _ _direct type qualifier 
has been mapped. 
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15.2  Large Models and Object Efficiency
15.2 Large Models and Object Efficiency

When a large model is used, compilation generates 24-bit addressing objects.  The 
code size for 24-bit addressing is larger and the execution speed is lower than for 16-
bit addressing.
For a system in which the data area or code area exceeds 64 Kbytes, using a large, 
medium, or compact model can reduce program efficiency and execution speed.  
These problems can be avoided by selecting optimum object mapping.

■ Generated Objects of Small and Large Models

This section explains the difference between generated objects when the same source file is
compiled using a small model and a large model. 

Figure 15.2-1 "s_f_dif.c Source File" shows the source file (s_f_dif.c) to be compiled.  This
section explains the difference when this source file is compiled using a small model and when
it is compiled using a large model.

Figure 15.2-1  s_f_dif.c Source File

Figure 15.2-2 "Source File Compiled Using a Small Model" shows the assembler source file
when s_f_dif.c is compiled using a small model.  Figure 15.2-3 "Source File Compiled Using a
Large Model" shows the assembler source file when s_f_dif.c is compiled using a large model.

When the source file is compiled using a small model, the code size is h’2c bytes.  When the
source file is compiled using a large model, the code size is h’41 bytes.  The difference is that,
for a small model, a code for 16-bit addressing is generated when an external variable is
accessed and a code for 24-bit addressing is generated for a large model.

External variable 
definition

External variable 
access
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CHAPTER 15  MEMORY MODELS AND OBJECT EFFICIENCY
Figure 15.2-2  Source File Compiled Using a Small Model

There is no problem when creating a small model system in which the code and data areas are
each within 64 Kbytes.  However, for a system in which the data area or code area exceeds 64
Kbytes, even marginally, using a large, medium, or compact model can reduce program
efficiency and execution speed.  These problems can be avoided by planning object mapping. 

Object mapping is described in CHAPTER 17 "MAPPING PROGRAMS IN WHICH THE CODE
AREA EXCEEDS 64 Kbytes" and CHAPTER 18 "MAPPING PROGRAMS IN WHICH THE
DATA AREA EXCEEDS 64 Kbytes".

Figure 15.2-3  Source File Compiled Using a Large Model

.SECTION CODE, CODE, ALIGN=1
;-------begin_of_function

.GLOBAL _func
_func:

LINK #2
PUSHW (RW0)

;;;; {
;;;; data = initaddress[1] + a;

MOVW A, _initaddress+2
ADDW A, @RW3+4
MOVW LI_1, A

;;;; for (i=0; i<10; i++)
MOVN A, #0
MOVW @RW3+-2, A

L_24:
;;;; for (i=0; i<10; i++)

MOVW A, @RW3+-2
MOVN A, #10
CMPW A
BGE L_23

;;;; test[i] = data * 2;
MOVW A, @RW3+-2
LSLW A
ADDW A, #_test
MOVW RW0, A
MOVW A, LI_1
LSLW A
MOVW @RW0, A

;;;; for (i=0; i<10; i++)
;;;; test[i] = data * 2;

INCW @RW3+-2
BRA L_24

L_23:
;;;; }

POPW (RW0)
UNLINK
RET
.END

.SECTION DATA, DATA, ALIGN=2

.ALIGN 2
LI_1:

.RES.B 2

.ALIGN 2

.GLOBAL _test
_test:

.RES.B 20

.SECTION DCONST, CONST, ALIGN=2

.ALIGN 2

.DATA.H 1

.DATA.H 2

.DATA.H 3

.DATA.H 4

.SECTION INIT, DATA, ALIGN=2

.ALIGN 2

.GLOBAL _initaddress
_initaddress:

.RES.H 1

.RES.H 1

.RES.H 1

.RES.H 1

NO SECTION-NAME SIZE ATTRIBUTES

0 DATA . . . . . . . . . . . . 000016 DATA REL ALIGN=2

1 DCONST . . . . . . . . . . . 000008 CONST REL ALIGN=2

2 INIT . . . . . . . . . . . . 000008 DATA REL ALIGN=2

3 CODE . . . . . . . . . . . . 00002C CODE REL ALIGN=1

NO SECTION-NAME SIZE ATTRIBUTES

0 DATA_s_l_dif . . . . . . . . 000016 DATA REL ALIGN=2

1 DCONST_s_l_dif . . . . . . . 000008 CONST REL ALIGN=2

2 DCLEAR . . . . . . . . . . . 000006 CONST REL ALIGN=2

3 INIT_s_l_dif . . . . . . . . 000008 DATA REL ALIGN=2

4 DTRANS . . . . . . . . . . . 00000A CONST REL ALIGN=2

5 CODE_s_l_dif . . . . . . . . 000041 CODE REL ALIGN=1

.SECTION DATA_s_l_dif, DATA, ALIGN=2
FAR_DATA_S:

.ALIGN 2
LI_1:

.RES.B 2

.ALIGN 2

.GLOBAL _test
_test:

.RES.B 20

.SECTION DCONST_s_l_dif, CONST, ALIGN=2
FAR_DCONST_S:

.ALIGN 2

.DATA.H 1

.DATA.H 2

.DATA.H 3

.DATA.H 4

.SECTION DATA_s_l_dif, DATA, ALIGN=2
FAR_DATA_E:

.SECTION DCLEAR, CONST, ALIGN=2

.DATA.L FAR_DATA_S

.DATA.H FAR_DATA_E - FAR_DATA_S

.SECTION INIT_s_l_dif, DATA, ALIGN=2
FAR_INIT_S:

.ALIGN 2

.GLOBAL _initaddress
_initaddress:

.RES.H 1

.RES.H 1

.RES.H 1

.RES.H 1

.SECTION INIT_s_l_dif, DATA, ALIGN=2
FAR_INIT_E:

.SECTION DTRANS, CONST, ALIGN=2

.DATA.L FAR_DCONST_S

.DATA.L FAR_INIT_S

.DATA.H FAR_INIT_E - FAR_INIT_S

.SECTION CODE_s_l_dif, CODE, ALIGN=1
;-------begin_of_function

.GLOBAL _func
_func:

LINK #2
PUSHW (RW0,RW1)

;;;; {
;;;; data = initaddress[1] + a;

MOV A, #bnksym _initaddress
MOV ADB, A
MOVW A, ADB:_initaddress+2
ADDW A, @RW3+6
MOV A, #bnksym LI_1
MOV ADB, A
SWAPW
MOVW ADB:LI_1, A

;;;; for (i=0; i<10; i++)
MOVN A, #0
MOVW @RW3+-2, A

L_24:
;;;; for (i=0; i<10; i++)

MOVW A, @RW3+-2
MOVN A, #10
CMPW A
BGE L_23

;;;; test[i] = data * 2;
MOVW A, @RW3+-2
EXTW
LSLW A
ADDL A, #_test
MOVL RL0, A
MOV A, #bnksym LI_1
MOV ADB, A
MOVW A, ADB:LI_1
LSLW A
MOVW @RL0, A

;;;; for (i=0; i<10; i++)
;;;; test[i] = data * 2;

INCW @RW3+-2
BRA L_24

L_23:
;;;; }

POPW (RW0,RW1)
UNLINK
RETP
.END
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CHAPTER 16 MAPPING VARIABLES QUALIFIED WITH 
THE TYPE QUALIFIER CONST

This chapter describes mapping of variables that have been qualified by the const type 

qualifier.  The F 2MC-16L/LX/F series has a function referred to as the mirror ROM 
function.  For small and medium models, this function enables variables mapped in the 
ROM area to be accessed using 16-bit addressing.

16.1  "Using the Mirror ROM Function and const Type Qualifier" 

16.2  "const Type Qualifier When the Mirror ROM Function Cannot Be Used"
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CHAPTER 16  MAPPING VARIABLES QUALIFIED WITH THE TYPE QUALIFIER CONST
16.1 Using the Mirror ROM Function and const Type Qualifier

This section provides notes on mapping variables qualified by the const type qualifier 
for hardware that supports the mirror ROM function.
By mapping variables in the areas defined for the hardware, variables in the ROM area 
can be accessed using 16-bit addressing.

■ What Is the Mirror ROM Function?

The F2MC-16L/LX/F series has a function referred to as the mirror ROM function.  When area
defined in the h’00 bank is accessed using 16-bit addressing, the mirror ROM function
automatically accesses the same area in the ROM area of the h’ff bank using 16-bit addressing. 

As a result, a variable qualified by the const type qualifier that has been mapped in the ROM
area can be accessed using 16-bit addressing in the same way as a standard variable mapped
in the h’00 bank. 

Figure 16.1-1 "Accessing Variables Qualified by the const Type Qualifier for Hardware That
Supports the Mirror ROM Function" shows an access image of variables qualified by a const
type qualifier for hardware that supports the mirror ROM function. 

Sections 16.1.1 "const Type Qualifier and Mirror ROM Function for Small and Medium Models"
and 16.1.2 "const Type Qualifier and Mirror ROM Function for Compact and Large Models"
provide notes on each memory model. 

The mirror ROM function depends on the hardware of the F2MC-16L/LX/F series.  For details,
refer to the hardware manual.

Figure 16.1-1  Accessing Variables Qualified by the const Type Qualifier for Hardware That Supports the 
Mirror ROM Function

I/O area

RAM area

ROM area h'ff 
bank image

Area that can be 
accessed from 
the h'00 bank.

Area that cannot 
be accessed 
from the h'00 bank.

Single chip mode (For the MB90678) 

h'ff bank 
ROM area 
64 Kbytes

h'00 bank 
64 Kbytes

PCB

DTB,SSB,USB

When using a chip that has the mirror ROM function 
such as the MB90678

Accessing addresses h'4000 to h'ffff in the h'00 bank 
accesses the same addresses in the h'ff bank. 
Memory is not present at addresses h'4000 to h'ffff in 
the h'00 bank.  However, the system operates as if 
the h'00 bank were being accessed. 
Addresses h'0000 to h'3fff in the h'ff bank cannot be 
accessed from the h'00 bank.

The addresses of the areas in the h'00 bank 
depend on the chip.
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16.1  Using the Mirror ROM Function and const Type Qualifier
16.1.1 const Type Qualifier and Mirror ROM Function for Small 
and Medium Models 

For small and medium models in which the data area is restricted to within 64 Kbytes, 
variables are accessed using 16-bit addressing on the premise that the variables are 
mapped in the bank pointed to by the DTB.
The mirror ROM function enables variables that are mapped in the h’ff bank to be 
accessed using 16-bit addressing.

■ Allocating Sections of Initialized Variables

For small and medium models, the data area that can be used is restricted to one bank within
64 Kbytes.  As a result, variables are accessed using 16-bit addressing on the premise that the
variables are in the bank pointed to by the DTB. 

Figure 16.1-2 "Output Sections and Their Allocation for Small and Medium Models" shows the
relationship between the output sections of variables for which initial values are specified and
their allocation in memory for small and medium models.

Figure 16.1-2  Output Sections and Their Allocation for Small and Medium Models

For small and medium models, a variable qualified by the const type qualifier is output to the
CONST section.  At linkage, this CONST section is allocated in the ROM area of the h’ff bank.
Normally, a CONST section present somewhere other than the bank pointed to by the DTB
cannot be accessed using 16-bit addressing.  If hardware that supports the mirror ROM function
is used, however, a variable in the CONST section allocated at a defined location in the ROM
area can be accessed using 16-bit addressing.

Variable qualified by the const type qualifier Initialized variable

The area CONST of a variable 
qualified by the const type qualifier 
is allocated in the ROM area.

DCONST

INIT

CONST
ROM area

RAM area

Link
INITCONST DCONST

When the variable is accessed, the 
ROM area is accessed directly. 
The initial value area DCONST is 
allocated in the ROM area.  The area 
INIT that is accessed at execution is 
allocated in the RAM area. 
For an initialized variable, the total 
size of the required ROM and RAM 
areas must be twice the size of the 
defined variable. 

The startup routine transfers the initial 
value in the ROM area to the variable 
area in the RAM area.
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CHAPTER 16  MAPPING VARIABLES QUALIFIED WITH THE TYPE QUALIFIER CONST
■ Notes on Using the Mirror ROM Function 

The areas at which variables in the h’ff bank can be accessed by the mirror ROM function using

16-bit addressing depend on the hardware of the F2MC-16L/LX/F series.  Table 16.1-1 "Scope
of Use of the Mirror ROM Function" lists the areas supported by the MB90670 series.

Variables mapped within the range listed above can be accessed using 16-bit addressing in the
same way as accessing other variables mapped by a function in the h’00 bank.  This is possible
because, when addresses h’0000 to h’ffff, h’8000 to h’ffff, or h’c000 to h’fff in the h’00 bank are
accessed, the CPU unconditionally accesses the same area in the h’ff bank.  Therefore, when
the area CONST section of a variable qualified by the const type qualifier is allocated within the
range listed above, the variable area in the ROM area can be accessed directly using 16-bit
addressing without using the _ _far type qualifier.  As a result, using the startup routine to
transfer the initial values from the ROM area to the RAM area can be omitted for a variable
qualified by the const type qualifier.  Because variables qualified by the const type qualifier are
present in the ROM area, initial values can of course be set at definition but the values cannot
be changed at execution. 

Figure 16.1-3 "Using the Mirror ROM Function and Allocating Areas of a Variable Qualified by
the const Type Qualifier (for a Small Model)" shows an example of allocating areas of a variable
qualified by the const type qualifier for a small model.

Figure 16.1-3  Using the Mirror ROM Function and Allocating Areas of a Variable Qualified by the const 
Type Qualifier (for a Small Model)

<Notes>

Note the following points regarding use of the mirror ROM function:

-  Map variables qualified by the const type qualifier up to address h’ff53 in the h’ff bank.

Table 16.1-1  Scope of Use of the Mirror ROM Function

Product MB90671 MB90672 MB90673 MB90P673

Starting address h’ffc000 h’ff8000 h’ff4000 h’ff4000

Ending address h’ffffff h’ffffff h’ffffff h’ffffff

I/O area 

Register bank

DATA

INIT

DIRDATA

DIRINIT

STACK

CODE

DCONST

DIRCONST

CONST

INTVECT

DTB,SSB,USB

DPR

PCB

RAM area

ROM area

The area CONST section of a 
variable qualified by the const type 
qualifier is present in the h'ff bank. 

When this area in the h'00 bank is 
accessed, the CONST section in 
the h'ff bank is accessed 
unconditionally.  As a result, the 
value need not be transferred from 
the ROM area to the RAM area.  
In addition, because the variable 
can be accessed using 16-bit 
addressing, the code is smaller 
than the definition that 
accompanies the _ _far type 
qualifier for accessing outside of 
the bank. 

The initial value in the ROM area is 
transferred to the variable area in 
the RAM area. 

@ -AL 0

@ -ro ROM_AREA=0xFF0000/0xFFFFFF

@ -ra RAM_AREA=0x000190/0x000CFF

@ -sc DATA/BYTE+INIT/BYTE+DIRDATA/PAGE+DIRINIT/WORD

+STACK/BYTE=RAM_AREA

@ -sc CODE/BYTE+DCONST/BYTE+DIRCONST/BYTE=ROM_AREA

@ -sc CONST/const/BYTE=0xFF4000

@ -rg 0

@ -m :¥softune¥ ¥CONST_**¥LST¥CONST.mp1

@ -pl 60

@ -pw 132

@ -alin :¥softune¥*¥CONST_**¥LST¥

@ -alout :¥softune¥*¥CONST_**¥LST¥

@ -na

@ -Xals

@ -Xalr

@ -w 1

@ -g

@ -cwno

@ -a

@ -cpu MB90678

@ -o *:¥softune¥*¥CONST_**¥ABS¥CONST_**.abs
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16.1  Using the Mirror ROM Function and const Type Qualifier
Interrupt vectors are mapped between addresses h’ff54 and h’ffff in the h’ff bank.  If a
variable is mapped in this area, interrupt operations will be unpredictable. 

-  Allocate the area for variables qualified by the const type qualifier so that the area is
accommodated in the area determined for each chip in the h’ff bank.  If a variable exceeds
the area, accessing using 16-bit addressing will not be possible. 

-  Do not allocate variable area or a stack in the area determined for each chip such as
addresses h’4000 to h’ffff or h’8000 to h’ffff in the h’00 bank.  Because the h’ff bank is
accessed, the value of a variable or stack in this area will be unpredictable.
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CHAPTER 16  MAPPING VARIABLES QUALIFIED WITH THE TYPE QUALIFIER CONST
16.1.2 const Type Qualifier and Mirror ROM Function for 
Compact and Large Models

For compact and large models, variables are accessed using 24-bit addressing.  
Therefore, the restriction dependent on the setting of the DTB register for small and 
compact models does not apply.

■ Allocating Sections of Initialized Variables

For compact and large models, the variable area can be allocated in multiple banks.  The
variables are always accessed using 24-bit addressing.  Therefore, the restriction dependent on
the setting of the DTB register for small and compact models does not apply.  The bank pointed
to by the DTB register is accessed using 16-bit addressing only when a variable qualified by the
_ _near type qualifier is accessed. 

When defining a variable qualified by the _ _const type qualifier, specify the _ _const type
qualifier only, or specify the _ _const type qualifier and the _ _far type qualifier.  For compact
and large models, a variable qualified by the _ _const type qualifier is output to a section called
"CONST_module name." 

Figure 16.1-4 "Output Sections and Their Allocation for Compact and Large Models" shows the
relationship between the output sections of variables for which initial values are specified and
their allocation in memory for compact and large models.

Figure 16.1-4  Output Sections and Their Allocation for Compact and Large Models

For compact and large models, a variable qualified by the const type qualifier is output to a
section called "CONST_module name."  At linkage, this CONST_module section is allocated in
the ROM area.  Because a variable is accessed using 24-bit addressing, the ROM area can be
accessed directly.

Variable qualified by the const type qualifier Initialized variable

ROM area

RAM area

Link
INIT_* DCONST_*

CONST_*

DCONST_*

INIT_*

CONST_*

The initial value area DCONST_* is allocated in 
the ROM area.  The area INIT_* that is accessed 
at execution is allocated in the RAM area. 
For an initialized variable, the total size of the 
required ROM and RAM areas must be twice the 
size of the defined variable. 

The startup routine transfers the initial value in the 
ROM area to the variable area in the RAM area.

The area CONST_* of a variable 
qualified by the const type qualifier is 
allocated in the ROM area. 
When the variable is accessed, the ROM 
area is accessed directly.

Note:  The asterisk (*) in the section name indicates the module name.
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16.1  Using the Mirror ROM Function and const Type Qualifier
■ Notes on Using the Mirror ROM Function

The areas where variables in the h’ff bank can be accessed by the mirror ROM function using

16-bit addressing depend on the hardware of the F2MC-16L/LX/F series. 

For compact and large models, specify the const type and _ _near type qualifiers when the
mirror ROM function is used to access a variable qualified by the const type qualifier using 16-
bit addressing.  The variable will then be output to the CONST section that can be accessed
when the bank pointed to by the DTB register is accessed using 16-bit addressing.  At linkage,
allocate this CONST section in an area supported by the mirror ROM function.

Figure 16.1-5  Using the Mirror ROM Function and Allocating Areas of a Variable Qualified by the const 
Type Qualifier (for a Large Model)

I/O area

Register bank

DIRDATA

DIRINIT

STACK

CODE_main

DCONST_main

DIRCONST

CONST

INTVECT

DTB

DPR

PCB

CODE_sub

DCONST_sub

DATA_sub

INIT_sub

DATA_main

INIT_main

SSB,USB

ROM area

RAM area

When this area in the h'00 bank 
is accessed, the CONST section 
in the h'ff bank is accessed 
unconditionally.  As a result, the 
value need not be transferred 
from the ROM area to the RAM 
area.  In addition, specifying the 
_ _near type qualifier enables 
the variable to be accessed 
using 16-bit addressing.

The area CONST section of a 
variable qualified by the const type 
qualifier is present in the h'ff bank.

The initial value in the ROM area 
is transferred to the variable area 
in the RAM area.

@ -AL 0
@ -ro ROM_AREA3=0xFD0000/0xFDFFFF
@ -ro ROM_AREA2=0xFE0000/0xFEFFFF
@ -ro ROM_AREA1=0xFF0000/0xFFFFFF
@ -ra RAM_AREA1=0x000190/0x000CFF
@ -ra RAM_AREA2=0x010000/0x01FFFF
@ -ra RAM_AREA3=0x020000/0x02FFFF
@ -ra RAM_AREA4=0x030000/0x03FFFF
@ -sc DIRDATA/dir/PAGE+DIRINIT/dir/BYTE=RAM_AREA1
@ -sc DATA_main/data/BYTE+INIT_main/data/BYTE=RAM_AREA2
@ -sc DATA_sub/data/BYTE+INIT_sub/data/BYTE=RAM_AREA3
@ -sc STACK/BYTE=RAM_AREA4
@ -sc CODE_sub/code/BYTE+DCONST_sub/const/BYTE=ROM_AREA3
@ -sc CODE_main/code/BYTE+DCONST_main/const/BYTE=ROM_AREA2
@ -sc DIRCONST/dirconst/BYTE=ROM_AREA1
@ -sc CONST/BYTE=0xFF4000
@ -m *:¥*¥LST¥for_text.mp1
@ -pl 60
@ -pw 132
@ -alin *:¥*¥for_text¥LST¥
@ -alout *:¥*¥for_text¥LST¥
@ -na
@ -Xals
@ -Xalr
@ -w 1
@ -g
@ -cwno
@ -a
@ -cpu MB90678
@ -o *:¥*¥for_text¥ABS¥for_text.abs
-Xdof

h�ff ffff

h�ff ff54

h�ff 4000

h�00 4000

h�00 0000

h�00 0180

h�ff 0000

h�fe 0000

h�fd 0000

h�03 0000

h�02 0000

h�01 0000
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CHAPTER 16  MAPPING VARIABLES QUALIFIED WITH THE TYPE QUALIFIER CONST
16.2 const Type Qualifier When the Mirror ROM Function Cannot 
Be Used

This section provides notes on mapping variables qualified by the const type qualifier 
for hardware that does not support the mirror ROM function.
The -ramconst option can be specified to output a section allocated to the ROM and 
RAM areas.  In addition, specifying the const type and _ _far type qualifiers enables 
the variable area in the ROM area to be accessed directly using 24-bit addressing.

■ Mapping Variables Qualified by the const Type Qualifier for Hardware That Does Not Support the 
Mirror ROM Function

The F2MC-16L/LX/F series includes hardware that does not support the mirror ROM function.
For systems that use such hardware, the ROM area in the h’ff bank cannot be accessed using
16-bit addressing.  This applies to small and compact models where the data area is accessed
using 16-bit addressing.

For these types of systems, the following two methods are available for mapping variables
qualified by the const type qualifier:

• Specify the -ramconst option at compilation.

• Specify the const type and _ _far type qualifiers at definition.

Sections 16.2.1 "Mapping Variables Qualified by the const Type Qualifier to RAM Area" and
16.2.2 "Specifying the const Type and _ _far Type Qualifiers at Definition" describe these two
methods. 

For compact and large models where the data area is accessed using 24-bit addressing,
because the variable area in the ROM area can be accessed directly, the above problem does
not occur.
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16.2  const Type Qualifier When the Mirror ROM Function Cannot Be Used
16.2.1 Mapping Variables Qualified by the const Type Qualifier to 
RAM Area

For small and medium models in which the mirror ROM function cannot be used 
because the data area is restricted to within 64 Kbytes, specify the -ramconst option at 
compilation.  Specifying the -ramconst option will enable the area of a variable 
qualified by the const type qualifier to be mapped in the RAM area in the same way as 
a normal variable.

■ Specification of the -ramconst Option and Output Sections

If hardware not supporting the mirror ROM function is used, a method is available for mapping a
variable qualified by the const type qualifier in the RAM area in the same way as a normal
variable. 

In this case, specify the -ramconst option at compilation.  Specifying the -ramconst option will
output the areas of a variable qualified by the const type qualifier to the CONST and CINIT
sections.  The CONST section is allocated in the ROM area.  The CINIT section is allocated in
the RAM area.  The startup routine transfers the initial value in the CONST section to the CINIT
section.  The CINIT section in the RAM area is accessed from a function.  When a program is
executed, this CINIT section becomes read-only. 

Figure 16.2-1 "Specifying the -ramconst Option (for a Small Model)" shows the relationship
between the output sections when the -ramconst option is specified for a small model.

Figure 16.2-1  Specifying the -ramconst Option (for a Small Model)

Figure 16.2-2 "Mapping a Variable Qualified by the const Type Qualifier to RAM Area (for a
Small Model)" is an example of mapping when the -ramconst option is specified for a small
model. 

In this example, the CONST section is allocated in the h’ff bank of the ROM area and the CINIT
section is allocated in the h’00 bank of the RAM area at linkage.  The startup routine transfers
the value from the CONST section to the CINIT section.

Variable qualified by the const type qualifier

CONST

ROM area 

Link

CONST

ROM area 

Link

CINIT

-ramconst option

CONST CONST CINIT

The initial value area of a 
variable qualified by the const 
type qualifier is allocated in 
the ROM area.  When the 
variable is accessed, the 
ROM area is accessed.

The initial value area CONST 
of a variable qualified by the 
const type qualifier is 
allocated in the ROM area.  
The startup routine transfers 
the value to the variable area 
CINIT in the RAM area.  
When the variable is 
accessed, the RAM area is 
accessed.
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CHAPTER 16  MAPPING VARIABLES QUALIFIED WITH THE TYPE QUALIFIER CONST
Figure 16.2-2  Mapping a Variable Qualified by the const Type Qualifier to RAM Area (for a Small Model)

I/O area

Register bank

DATA

INIT

DIRDATA

DIRINIT

CINIT

CODE

DCONST

DIRCONST

CONST

INTVECT

DTB,SSB,USB

DPR

PCB

STACK

ROM area

RAM area

When a variable qualified by the 
const type qualifier is accessed 
using 16-bit addressing, the initial 
value in the ROM area must be 
transferred to the variable area in 
RAM area.

The initial value in the ROM area 
is transferred to the variable area 
in the RAM area.

h�ff ffff

h�ff ff54

h�ff 0000

h�00 0000

h�00 0180

@ -AL 0

@ -ro ROM_AREA=0xFF0000/0xFFFFFF
@ -ra RAM_AREA=0x000190/0x000CFF
@ -sc DATA/BYTE+INIT/BYTE+DIRDATA/PAGE+DIRINIT/WORD

+CINIT/BYTE+STACK/BYTE=RAM_AREA

@ -sc CODE/BYTE+DCONST/BYTE+DIRCONST/BYTE
+CONST/BYTE=ROM_AREA

@ -rg 0

@ -m *:¥softune¥*¥CONST_**¥LST¥CONST_**.mp1
@ -pl 60
@ -pw 132
@ -alin *:¥softune¥*¥CONST_**¥LST¥

@ -alout *:¥softune¥*¥CONST_*¥LST¥
@ -na
@ -Xals

@ -Xalr
@ -w 1
@ -g

@ -cwno
@ -a
@ -cpu MB90678
@ -o *:¥softune¥*¥CONST_*¥ABS¥CONST_*.abs

h�00 0190
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16.2  const Type Qualifier When the Mirror ROM Function Cannot Be Used
16.2.2 Specifying the const Type and _ _far Type Qualifiers at 
Definition

For small and medium models where the data area is restricted to within 64 Kbytes, 
variables are accessed using 16-bit addressing on the premise that the variables are 
mapped in the bank pointed to by the DTB.
If hardware not supporting the mirror ROM function is used, specifying the const type 
and _ _far type qualifiers will enable the variable area in the ROM area to be accessed 
directly using 24-bit addressing. 

■ Output Sections of Variables Qualified by the const Type and _ _far Type Qualifiers

For small and medium models, the available data area is restricted to within one bank (64
Kbytes).  Variables are therefore accessed using 16-bit addressing on the premise that the
variables are mapped in the bank pointed to by the DTB. 

For hardware not supporting the mirror ROM function, specify the const type and _ _far type
qualifiers to enable direct access of a variable qualified by the const type qualifier in the ROM
area.  A code for 24-bit addressing will then be generated only when a variable qualified by the
const type qualifier that has been mapped in the ROM area is accessed. 

Figure 16.2-3 "Output Sections of a Variable Qualified by the const Type and _ _far Type
Qualifiers (for a Small Model)" shows the relationship between the output sections of a variable
for which an initial value has been specified and the sections of a variable qualified by const
type and _ _far type qualifiers.  This applies to small and medium models.

Figure 16.2-3  Output Sections of a Variable Qualified by const Type and _ _far Type Qualifiers (for a 
Small Model)

Variable qualified by const type and _ _far type qualifiers

DCONST

INIT

CONST_*
ROM area

RAM area

Link 
INITCONST_* DCONST

Initialized variable

The area of a variable qualified by const type and 
_ _far type qualifiers is allocated in the ROM 
area.  When the variable is accessed, the ROM 
area is accessed directly. The initial value area DCONST is allocated in the 

ROM area.  At execution, the area INIT to be 
accessed is allocated in the RAM area. 
For an initialized variable, the total size of the 
required ROM and RAM areas must be twice the 
size of the defined variable.

The startup routine transfers the initial value in the 
ROM area to the variable area in the RAM area. 

Note:  The asterisk (*) in the section name 
indicates the module name.
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CHAPTER 16  MAPPING VARIABLES QUALIFIED WITH THE TYPE QUALIFIER CONST
Figure 16.2-4 "Mapping a Variable Qualified by the const Type and _ _far Type Qualifiers (for a
Small Model)" is an example of mapping when a variable qualified by const type and _ _far type
qualifiers is defined for a small model. 

In this example, the const_* section is allocated in the h’ff bank of the ROM area at linkage.  A
code for 24-bit addressing is generated only when a variable mapped in the const_* section is
accessed.

Figure 16.2-4  Mapping a Variable Qualified by const Type and _ _far Type Qualifiers (for a Small Model)
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DIRDATA

DIRINIT
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DCONST

DIRCONST
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DTB,SSB,USB

DPR
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For small and medium models, a variable is accessed 
using 16-bit addressing on the premise that the variable 
is mapped in the h'00 bank pointed to by the DTB. 
To access a variable mapped outside of the h'00 bank, 
use the _ _far type qualifier to specify access using 24-
bit addressing when the variable is defined.

When the _ _far type qualifier is 
also specified for a variable 
qualified by the const type 
qualifier to access the variable 
using 24-bit addressing, the 
CONST section allocated in the 
ROM area is accessed directly. 

The initial value in the ROM area 
is transferred to the variable 
area in the RAM area.

h�ff ffff

h�ff ff54

h�ff 0000

h�00 0000

h�00 0180

@ -AL 0
@ -ro ROM_AREA=0xFF0000/0xFFFFFF

@ -ra RAM_AREA=0x000190/0x000CFF
@ -sc DATA/BYTE+INIT/BYTE+DIRDATA/PAGE+DIRINIT/BYTE

+STACK/BYTE=RAM_AREA
@ -sc CODE/BYTE+DCONST/BYTE+DIRCONST/BYTE

+CONST_*/BYTE=ROM_AREA

@ -rg 0
@ -m *:¥softune¥*¥const_*r¥LST¥const_*.mp1
@ -pl 60
@ -pw 132

@ -alin *:¥softune¥*¥const_*¥LST¥
@ -alout *:¥softune¥*¥const_*¥LST¥
@ -na
@ -Xals
@ -Xalr

@ -w 1
@ -g
@ -cwno
@ -a
@ -cpu MB90678
@ -o *:¥softune¥*¥const_*¥ABS¥const_*.abs

h�00 0190
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CHAPTER 17 MAPPING PROGRAMS IN WHICH THE 
CODE AREA EXCEEDS 64 Kbytes

This chapter describes how to map programs in which the code area of the program to 
be created exceeds 64 Kbytes.
For a system in which the code area exceeds 64 Kbytes, it is recommended that a 
small or compact model be used and that the _ _far type qualifier be specified in the 
functions.

17.1  "Functions Calls of Programs in Which the Code Area Exceeds 64 Kbytes"

17.2  "Using Calls For Functions Qualified by the _ _far Type Qualifier"

17.3  "Mapping Functions Qualified by the _ _far Type Qualifier"

17.4  "Using Calls for Functions Qualified by the _ _near Type Qualifier"

17.5  "Mapping Functions Qualified by the _ _near Type Qualifier"
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CHAPTER 17  MAPPING PROGRAMS IN WHICH THE CODE AREA EXCEEDS 64 Kbytes
17.1 Functions Calls of Programs in Which the Code Area 
Exceeds 64 Kbytes

When creating a system in which the code area exceeds 64 Kbytes, use a medium or 
large model in which the functions are called using 24-bit addressing.
For a system in which the code area exceeds 64 Kbytes, however, function calls using 
24-bit addressing can increase the code size.

■ Function Calls Using 24-Bit Addressing

Table 17.1-1 "Type Qualifiers, Memory Models, and Code Section Names" lists the relationship
between the output code section names for type qualifiers and memory models of the functions.

As listed in Table 15.1-1 "fcc907 Memory Models" the fcc907 uses a medium or large model
when creating a program in which the code area for the entire system exceeds 64 Kbytes. 

For a medium or large model, a code for 24-bit addressing is generated unconditionally when a
function is called.  When multiple banks are used and there are frequent calls between the
banks, a problem will not occur even if a code for 24-bit addressing is generated.  For a system
in which the code area exceeds one bank (64 Kbytes), accessing functions using 24-bit
addressing can increase the size of the code area. 

For small or compact models in which function calls are accessed using 16-bit addressing, a
function qualified by the _ _far type qualifier can be accessed using 24-bit addressing.  Section
17.2 "Using Calls for Functions Qualified by the _ _far Type Qualifier" explains how to define
and map functions qualified by the _ _far type qualifier for small and compact models.

Table 17.1-1  Type Qualifiers, Memory Models, and Code Section Names

Type qualifier specification Small or compact model Large or medium model

None CODE CODE_module name

_ _near CODE CODE_module name

_ _far CODE_module name CODE_module name
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17.2  Using Calls For Functions Qualified by the _ _far Type Qualifier
17.2 Using Calls For Functions Qualified by the _ _far Type 
Qualifier

This section describes how to specify the _ _far type qualifier in a function for small 
and compact models in which functions are accessed using 16-bit addressing.
It is recommended that the _ _far type qualifier be specified for functions that are not 
frequently called or functions that are called from all functions.

■ Specifying the _ _far Type Qualifier in a Function for Small and Compact Models

When creating a system in which the code area exceeds 64 Kbytes, a code for 24-bit
addressing will be generated if a medium or large model in which all functions are accessed
using 24-bit addressing is used.  Even for a small model in which calling within a bank is a
default, the _ _far type qualifier can be specified to generate a code for 24-bit addressing. 

When creating a system in which the code area exceeds 64 Kbytes, it is recommended that the
_ _far type qualifier be specified for some of the functions at compilation for a small or compact
model.

■ Dividing Modules and Specifying the _ _far Type Qualifier in a Function

The tree structure shown in Figure 17.2-1 "Function Call Relationship and Mapping Image 1" is
assumed for the relationship of all function calls in the system to be developed.

Figure 17.2-1  Function Call Relationship and Mapping Image 1

In this example, function main( ) calls the three functions sub_1( ), sub_2( ), and sub_3( ).  For
subsequent functions sub_1_xx( ), it is assumed that functions sub_2_xx( ) and sub_3_xx( ) are
also called using the same route via sub_1( ).  In addition, function sub_3( ) is not frequently
called. 

The relationship of these calls is used to divide the banks in which the functions are to be

main( )

sub_1( ) sub_2( ) sub_3( )

sub_1_1( )

sub_1_1_1( )

sub_1_2( ) sub_2_1( ) sub_2_2( )

sub_1_2_1( ) sub_1_2_2( )

sub_3_1( ) sub_3_2( )

Bank h'ff

Bank h'fe

Function modified by the 
_ _far type modifier

Calls within a bank.  Accessed 
using 16-bit addressing. 

Calls between banks.  Accessed 
using 24-bit addressing.
191



CHAPTER 17  MAPPING PROGRAMS IN WHICH THE CODE AREA EXCEEDS 64 Kbytes
mapped.  In this example, function sub_3( ) not called frequently and function sub_3( ) are
mapped in bank h’fe.  The other functions are mapped in bank h’ff. 

When a system in which the calls have this type of relationship is compiled using a medium or
large model, a code for 24-bit addressing will be generated for all function calls.  Even when
function sub_1_1( ) is called from function sub_1( ), a code for 24-bit addressing will be
generated in the same way as when function sub_1( ) is called in the same bank from function
main( ). 

Assume that the _ _far type qualifier is specified in function sub_3( ) for compilation using a
small or compact model.  Then, when the function is mapped as shown in Figure 17.2-1
"Function Call Relationship and Mapping Image 1" a call for outside the bank using 24-bit
addressing will be generated only when function sub_3( ) is called from function main( ).  For all
other functions, the functions will be called using 16-bit addressing within the bank. 

As shown in this example, it is recommended that the _ _far type qualifier be specified for small
and compact models in which processing of the functions can be easily divided.  Using the  _
_far type qualifier can reduce the size of the code and increase execution speed.

Figure 17.2-2  Function Call Relationship and Mapping Image 2

Two methods are available if processing of the functions cannot be easily divided.  In one
method, as shown in Figure 17.2-2 "Function Call Relationship and Mapping Image 2" specify
the _ _far type qualifier to map a common function into a separate bank because the common
function can be called from all locations in a system.  In the other method, as shown in Figure
17.2-3 "Function Call Relationship and Mapping Image 3" specify the _ _far type qualifier to
map a function that is not called frequently into a separate bank.  Determine the functions to be
qualified by the _ _far type qualifier based on the system to be created.

main( )

A( ) C( )

D( )

Bank h'ff 

Bank h'fe

B( )

E( )

com( )

Function qualified by the
_ _far type qualifier 

Function com( ) is called from all 
functions in the system.

Calls within a bank.  Accessed 
using 16-bit addressing. 

Calls between banks.  Accessed 
using 24-bit addressing.
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17.2  Using Calls For Functions Qualified by the _ _far Type Qualifier
Figure 17.2-3  Function Call Relationship and Mapping Image 3

[Tip]

Softune C Analyzer:

The Softune C Analyzer displays mutual calls of the analyzed functions.  The relationship of
the displayed function calls is helpful in determining the functions to be qualified by the _ _far
type qualifier.

main( )

sub_a( ) sub_c( )

sub_d( )

sub_a_1( )

sub_a_1_1( )

sub_a_2( )

sub_c_1( )

sub_a_2_1( ) sub_a_2_2( )

sub_d_1( ) sub_d_2( )

Bank h'ff 

Bank h'fe

sub_c( )

Function modified by 
the _ _far type modifier

Function sub_d( ) is not called frequently.

Calls within a bank.  Accessed using 
16-bit addressing. 

Calls between banks.  Accessed using 
24-bit addressing. 
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17.3 Mapping Functions Qualified by the _ _far Type Qualifier

This section provides notes on mapping functions qualified by the _ _far type qualifier.  
The output section name of a function is dependent on the memory model specified at 
compilation.  A function qualified by the _ _far type qualifier is always output to a 
section called "CODE_module name." 

■ Memory Models and Output Sections of Functions Qualified by the _ _far Type Qualifier

The output section name of a function is dependent on the memory model specified at
compilation.  The output section of a function qualified by the _ _far type qualifier, however, is
not dependent on the memory model.  The function is always output to a section called
"CODE_module name."  Sections 17.3.1 "Functions Qualified by the _ _far Type Qualifier for
Small and Compact Models" and 17.3.2 "Functions Qualified by the _ _far Type Qualifier for
Medium and Large Models" provide notes on mapping functions qualified by the _ _far type
qualifier for each memory model.
194



17.3  Mapping Functions Qualified by the _ _far Type Qualifier
17.3.1 Functions Qualified by the _ _far Type Qualifier for Small 
and Compact Models

This section provides notes on mapping functions qualified by the _ _far type qualifier 
for small and compact models in which functions are accessed using 16-bit 
addressing.  For small and compact models, a function qualified by the _ _far type 
qualifier is output to a section called "CODE_module name" as a result of compilation.

■ Code Sections of Small and Compact Models

Figure 17.3-1 "Linkage of Functions Qualified by the _ _far Type Qualifier for Small and
Compact Models" shows an image of linkage of function qualified by the _ _far type qualifier for
small and compact models. 

For small and compact models, a function for which a type qualifier is not specified is output to a
CODE section as a result of compilation.  At linkage, this CODE section is allocated in the ROM
area pointed to by the PCB.  This CODE section is always allocated in the area of bank h’ff.  A
function qualified by the _ _far type qualifier is output to a section called "CODE_module name"
as a result of compilation.  Because a function output to this section is accessed using 24-bit
addressing, a section called "CODE_module name" can be allocated in a ROM area other than
the ROM area pointed to by the PCB.

Figure 17.3-1  Linkage of Functions Qualified by the _ _far Type Qualifier for Small and Compact Models
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one section at linkage.
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■ Example of Mapping Functions Qualified by the _ _far Type Qualifier (for a Small Model)

Figure 17.3-2 "Example of Mapping Functions Qualified by the _ _far Type Qualifier (for a Small
Model)" shows an example of mapping functions qualified by the _ _far type qualifier compiled
using a small model.

Figure 17.3-2  Example of Mapping Functions Qualified by the _ _far Type Qualifier (for a Small Model)

In this example, the h’ff and h’fe banks are a ROM area.  The following sections are allocated in
the h’ff bank:

• CODE (code area of a function for which a type qualifier is not specified)

• DCONST (initial value area of a variable)

• CONST_m (area of a variable qualified by the const type and _ _far type qualifiers for
module m)

• DIRCONST (initial value area of a variable qualified by the _ _direct type qualifier)

The section CODE_m of a function qualified by the _ _far type qualifier for module m is
allocated in the h’fe bank.  

The h’00 bank is a RAM area.  The following sections are allocated in the h’00 bank:

• IO_REG (I/O register variable area)

• DATA (variable area)

• INIT (area of an initialized variable)

• DIRDATA (area of a variable qualified by the _ _direct type qualifier)

• DIRINIT (area of an initialized variable qualified by the _ _direct type qualifier)

• STACK (user stack and system stack)

Refer to this example to allocate a section based on the system to be created.

I/O area

DATA

INIT

DIRDATA

DIRINIT

STACK

CODE

DCONST

DIRCONST

CONST_m

INTVECT

DTB,SSB,USB

DPR

PCB

CODE_m

ROM area

RAM area

For small and compact models, a function is 
accessed using 16-bit addressing on the premise 
that the code area is mapped in the h'ff bank 
pointed to by the PCB. 
To map a function outside of the h'ff bank, use the 
_ _far type qualifier to define the function so that it 
is accessed using 24-bit addressing. 

The initial value in the ROM area 
is transferred to the variable area 
in the RAM area.

The section of a function qualified 
by the _ _far type qualifier is 
allocated in the h'fe bank. 
Code for 24-bit addressing is 
generated only when the function 
mapped here is accessed. 

Register bank

h�ff ffff

h�ff ff54

h�ff 0000

h�00 0000

h�00 0180

@ -AL 0
@ -ro ROM_2=0xFE0000/0xFEFFFF
@ -ro ROM_1=0xFF0000/0xFFFFFF
@ -ra RAM_AREA=0x000190/0x000CFF
@ -sc DATA/BYTE+INIT/BYTE+DIRDATA/PAGE+DIRINIT/BYTE

+STACK/BYTE=RAM_AREA
@ -sc CODE_m/code/BYTE=ROM_2
@ -sc CODE/BYTE+*/const/BYTE+DIRCONST/BYTE=ROM_1
@ -rg 0
@ -m *:¥Softune¥*¥LST¥far_*.mp1
@ -pl 60
@ -pw 132
@ -alin *:¥Softune¥*¥far_*¥LST¥
@ -alout *:¥Softune¥*¥far_f*¥LST¥
@ -na
@ -Xals
@ -Xalr
@ -w 1
@ -g
@ -cwno
@ -a
@ -cpu MB90678
@ -o *:¥Softune¥1*¥far_*¥ABS¥far_*l.abs

h�00 0190

h�fe 0000
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17.3.2 Functions Qualified by the _ _far Type Qualifier for 
Medium and Large Models

This section provides notes on mapping functions qualified by the _ _far type qualifier 
for medium and large models in which functions are accessed using 24-bit addressing.  
For medium and large models, functions for which a type qualifier is not specified and 
functions that are qualified by the _ _far type qualifier are output to sections called 
"CODE_module name."

■ Code Sections of Medium and Large Models

Figure 17.3-3 "Linkage of Functions Qualified by the _ _far Type Qualifier for Medium and Large
Models" shows an image of linkage of functions qualified by the _ _far type qualifier for medium
and large models. 

For medium and large models, a function for which a type qualifier is not specified is output to a
section called "CODE_module name" as a result of compilation.  A function qualified by the  _
_far type qualifier is also output to a section called "CODE_module name."  As a result, a
function qualified by the _ _far type qualifier is output to the same section as a function for which
a type qualifier is not specified. 

The functions output to these sections are accessed using 24-bit addressing.  As a result, a
section called "CODE_module name" can be allocated in a ROM area other than the ROM area
pointed to by the PCB.

Figure 17.3-3  Linkage of Functions Qualified by the _ _far Type Qualifier for Medium and Large Models
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■ Example of Mapping Functions Qualified by the _ _far Type Qualifier (for a Large Model)

Figure 17.3-4 "Example of Mapping Functions Qualified by the _ _far Type Qualifier (for a Large
Model)" is an example of mapping functions qualified by the _ _far type qualifier compiled using
a large model.

Figure 17.3-4  Example of Mapping Functions Qualified by the _ _far Type Qualifier (for a Large Model)

A function qualified by the _ _far type qualifier is output to a section called "CODE_module
name." 

In this example, the h’fd, h’fe, and h’ff banks are ROM area.  The following sections are
allocated in the h’fd bank:

• CODE_space3 (code area of module space3)

• CONST_space3 (variable area of a variable qualified by the const type qualifier of module
space3)

• DCONST_space3 (initial value area of a variable of module space3)

The following sections are allocated in the h’fe bank:

• CODE_space2 (code area of module space2)

• CONST_space2 (variable area of a variable qualified by the const type qualifier of module
space2)

• DCONST_space2 (initial value area of a variable of module space2)

The following sections are allocated in the h’ff bank:

• CODE_space1 (code area of module space1)

• CONST_space1 (variable area of a variable qualified by the const type qualifier of module
space1)

• DCONST_space1 (initial value area of a variable of module space1)

• DIRCONST (initial value area of a variable qualified by the _ _direct type qualifier)

In this example, the h’00, h’01, h’02, and h’03 banks are in a RAM area.  The following sections
are allocated in the h’00 bank:

I/O area

Register bank

DATA_space1

INIT_space1

DIRDATA

DIRINIT STACK

CODE_space1

DCONST_space1

DIRCONST

CONST_space1

INTVECT

DTB

DPR

PCB

CODE_space3

DCONST_space3

CONST_space3

CODE_space2

DCONST_space2

CONST_space2

DATA_space2

INIT_space2

DATA_space3

INIT_space3

RAM area 

ROM area 

h�ff ffff

h�ff ff54

h�ff 0000

h�00 0000

h�00 0180

h�00 0190

h�fd 0000

@ -AL 0
@ -ro ROM3=0xFD0000/0xFDFFFF
@ -ro ROM2=0xFE0000/0xFEFFFF
@ -ro ROM1=0xFF0000/0xFFFFFF
@ -ra space1=0x000190/0x000CFF
@ -ra space2=0x010000/0x01FFFF
@ -ra space3=0x020000/0x02FFFF
@ -ra space4=0x030000/0x03FFFF
@ -sc *space1/data/BYTE+DIRDATA/dir/PAGE

+DIRINIT/dir/BYTE=space1
@ -sc *space2/data/BYTE=space2
@ -sc *space3/data/BYTE=space3
@ -sc STACK/BYTE=space4
@ -sc *space3/code/BYTE+*space3/const/BYTE=ROM3
@ -sc *space2/code/BYTE+*space2/const/BYTE=ROM2
@ -sc *space1/code/BYTE+*space1/const/BYTE

+*/dirconst/BYTE+*/code/BYTE+*/const/BYTE=ROM1
@ -rg 0
@ -m *:¥Softune¥*¥far_*¥LST¥far_*.mp1
@ -pl 60
@ -pw 132
@ -alin *:¥Softune¥*¥far_*¥LST¥
@ -alout *:¥Softune¥*¥far_*¥LST¥
@ -na
@ -Xals
@ -Xalr
@ -w 1
@ -g
@ -cwno
@ -a
@ -cpu MB90678
@ -o *:¥Softune¥*¥far_*¥ABS¥far_*.abs

h�fe 0000

h�03 0000

h�02 0000

h�01 0000
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17.3  Mapping Functions Qualified by the _ _far Type Qualifier
• IO_REG (I/O register variable area)

• DATA_space1 (variable area of module space1)

• INIT_space1 (area of an initialized variable of module space1)

• DIRDATA (variable area of a variable qualified by the _ _direct type qualifier)

• DIRINIT (variable area of an initialized variable qualified by the _ _direct type qualifier)

The following sections are allocated in the h’01 bank:

• DATA_space2 (variable area of module space2)

• INIT_space2 (area of an initialized variable of module space2)

The following sections are allocated in the h’02 bank:

• DATA_space3 (variable area of module space3)

• INIT_space3 (area of an initialized variable of module space3)

The following section is allocated in the h’03 bank:

• STACK (user stack and system stack)

Refer to this example to allocate each section based on the system to be created.
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17.4 Using Calls for Functions Qualified by the _ _near Type 
Qualifier

This section describes how to specify the _ _near type qualifier in a function for 
medium and large models in which functions are accessed using 24-bit addressing.
Specifying the _ _near type qualifier enables functions mapped in the same bank to be 
accessed using 16-bit addressing.

■ Specifying the _ _near Type Qualifier in Functions for Medium and Large Models

A medium or large model in which functions are accessed using 24-bit addressing is used for a
system in which most functions are called between banks.  Even in a system such as this,
however, there are functions called only from functions mapped in the same bank and not called
from functions mapped outside of the bank.  These functions are shown in Figure 17.4-1
"Function Call Relationship and Mapping Image 4".  Because the scope of a variable declared
as static is within the module, this is equivalent to a function called within a bank.  To access
functions called within a bank, 16-bit addressing will be sufficient.  However, when functions are
compiled using a medium or large model, a code for 24-bit addressing will be generated for all
function calls.  Therefore, the _ _near type qualifier can be specified for these functions so that
they will be mapped in the same bank as the function calling them.  As a result, a code for
calling within a bank using 16-bit addressing can be generated even for medium and large
models in which accessing functions outside the bank are default.

Figure 17.4-1  Function Call Relationship and Mapping Image 4
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[Tip] 

Softune C Analyzer:

The Softune C Analyzer displays mutual calls of the analyzed functions.  The relationship of
the displayed function calls is helpful in determining the functions to be qualified by the  _
_near type qualifier.
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17.5 Mapping Functions Qualified by the _ _near Type Qualifier

This section provides notes on mapping functions qualified by the _ _near type 
qualifier for medium and large models in which functions are accessed using 24-bit 
addressing.
For medium and large models, a function qualified by the _ _near type qualifier is 
output to a section called "CODE_module name" in the same way as other functions.

■ Memory Models and Output Sections of Functions Qualified by the _ _near Type Qualifier

The output section name of a function is dependent on the memory model specified at
compilation.  For small and medium models, a function qualified by the _ _near type qualifier is
output to a CODE section in the same way as a function for which a type qualifier is not
specified. 

For medium and large models, a function for which a type qualifier is not specified is output to a
section called "CODE_module name."  A function qualified by the _ _near type qualifier is also
output to a section called "CODE_module name." 

Figure 17.5-1 "Linkage of Functions Qualified by the _ _near Type Qualifier for Medium and
Large Models" shows an image of linkage of functions qualified by the _ _near type qualifier for
medium and large models. 

The function A_near( ) defined in module a is output to the CODE_a section.  The function
B_near( ) defined in module b is output to the CODE_b section.  In the same way, the function
C_near( ) defined in module c is output to the CODE_c section.  At linkage, these sections are
allocated in the same bank as the module in which the function is defined.

Figure 17.5-1  Linkage of Functions Qualified by the _ _near Type Qualifier for Medium and Large Models

CODE_a
a.c

b.c

c.c

a.obj

b.obj

c.obj

CODE_b

CODE_c

CODE_a

CODE_b

CODE_c

Data section

Compile 

Assemble 

Compile 

Assemble 

Compile 

Assemble 

Link 
Data section

Data section

Data section

Functions qualified by the _ _near type 
qualifier and functions for which a type 
qualifier is not specified are output to 
sections called "CODE_module name."
202



17.5  Mapping Functions Qualified by the _ _near Type Qualifier
■ Example of Mapping Functions Qualified by the _ _near Type Qualifier (for a Medium Model)

For medium and large models, functions are accessed using 24-bit addressing using the PCB
register.  For medium and large models, when a function qualified by the _ _near type qualifier
is called from a function for which a type qualifier is not specified, the calling function and called
function must be mapped in the same bank.  The PCB that is set when calling a function for
which a type qualifier is not specified is used as is for calling a function qualified by the _ _near
type qualifier. 

Figure 17.5-2 "Example of Mapping Functions Qualified by the _ _near Type Qualifier (for a
Medium Model)" is an example of mapping functions qualified by the _ _near type qualifier
compiled using a medium model.  The functions qualified by the _ _near type qualifier are
output to sections called "CODE_module name" in the same way as functions for which a type
qualifier is not specified.

Figure 17.5-2  Example of Mapping Functions Qualified by the _ _near Type Qualifier (for a Medium 
Model)

In this example, the h’fd, h’fe, and h’ff banks are ROM area.  The following section is allocated
in the h’fd bank:

• CODE_space3 (code area of module space3)

The following section is allocated in the h’fe bank:

• CODE_space2 (code area of module space2)

The following sections are allocated in the h’ff bank:

• CODE_space1 (code area of module space1)

• DIRCONST (initial value area of a variable qualified by the _ _direct type qualifier)

• DCONST (initial value area of a variable)

• CONST (variable area of a variable qualified by the const type qualifier)

In this example, the h’00 bank is RAM area.  The following sections are allocated in the h’00
bank:

I/O area

Register bank

DATA

INIT

DIRDATA

DIRINIT

STACK

CODE_space1

DCONST

DIRCONST

CONST

INTVECT

DTB

DPR

PCB

CODE_space3

CODE_space2

RAM area

ROM area

h�ff ffff

h�ff ff54

h�ff 0000

h�00 0000

h�00 0180

h�00 0190

h�fd 0000

h�fe 0000

@ -AL 0
@ -ro ROM3=0xFD0000/0xFDFFFF
@ -ro ROM2=0xFE0000/0xFEFFFF
@ -ro ROM1=0xFF0000/0xFFFFFF
@ -ra space1=0x000190/0x000CFF
@ -sc */data/BYTE+DIRDATA/dir/PAGE+DIRINIT/dir/BYTE

+STACK/stack/WORD=space1
@ -sc CODE_space3/code/BYTE=ROM3
@ -sc CODE_space2/code/BYTE=ROM2
@ -sc *space1/code/BYTE+*space1/const/BYTE

+*/dirconst/BYTE+*/code/BYTE+*/const/BYTE=ROM1
@ -rg 0
@ -m *:¥Softune¥*¥near_*¥LST¥near_*.mp1
@ -pl 60
@ -pw 132
@ -alin *:¥Softune¥*¥near_*¥LST¥
@ -alout *:¥Softune¥*¥near_*¥LST¥
@ -na
@ -Xals
@ -Xalr
@ -w 1
@ -g
@ -cwno
@ -a
@ -cpu MB90678
@ -o *:¥Softune¥*¥near_*¥ABS¥near_*.abs

h�ff 4000
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CHAPTER 17  MAPPING PROGRAMS IN WHICH THE CODE AREA EXCEEDS 64 Kbytes
• IO_REG (I/O register variable area)

• DATA (variable area)

• INIT (area of an initialized variable)

• DIRDATA (variable area of a variable qualified by the _ _direct type qualifier)

• DIRINIT (variable area of an initialized variable qualified by the _ _direct type qualifier)

• STACK (user stack and system stack)

Refer to this example to allocate each section based on the system to be created.
204



CHAPTER 18 MAPPING PROGRAMS IN WHICH THE 
DATA AREA EXCEEDS 64 Kbytes

This chapter describes how to map programs in which the data area of the program to 
be created exceeds 64 Kbytes.
For a system in which the data area exceeds 64 Kbytes even slightly, it is 
recommended that a small or compact model be used and that the _ _far type qualifier 
be specified in the functions.

18.1  "Function Calls of Programs Where the Data Area Exceeds 64 Kbytes"

18.2  "Using Calls for Variables Qualified by the _ _far Type Qualifier"

18.3  "Mapping Variables Qualified by the _ _far Type Qualifier"

18.4  "Using Calls For Variables Qualified by the _ _near Type Qualifier"

18.5  "Mapping Variables Qualified by the _ _near Type Qualifier"
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CHAPTER 18  MAPPING PROGRAMS IN WHICH THE DATA AREA EXCEEDS 64 Kbytes
18.1 Function Calls of Programs Where the Data Area Exceeds 
64 Kbytes

When creating a system in which the data area exceeds 64 Kbytes, a compact or large 
model in which variables are accessed using 24-bit addressing is used.
For a system in which the data area exceeds 64 Kbytes, however, accessing variables 
using 24-bit addressing can increase the size of the code area.

■ Accessing Variables Using 24-Bit Addressing

Table 18.1-1 "Data Section Names for Small and Medium Models" and Table 18.1-2 "Data
Section Names for Compact and Large Models" list the type qualifiers of variables and the
memory model specifications and output section names at compilation.

Table 18.1-1  Data Section Names for Small and Medium Models

Type qualifier specification Initial value 
specification

Variable area 
name

Initial value area

_ _io _ _direct const _ _near _ _far

DATA

o DATA

o DATA_module 
name

o INIT DCONST

o o INIT DCONST

o o INIT_module 
name

DCONST_module 
name

o o CONST CINIT

o o o CONST CINIT

o o o CONST_module 
name

CINIT_module 
name

o DIRDATA

o o DIRINIT DIRCONST

o IO
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18.1  Function Calls of Programs Where the Data Area Exceeds 64 Kbytes
As listed in Table 15.1-1 "fcc907 Memory Models" the fcc907 uses a compact or large model
when creating a program in which the data area for the entire system exceeds 64 Kbytes. 

For a compact or large model, a code for accessing variables using 24-bit addressing is
generated.  When multiple banks are used in the data area for accessing variables, there is no
problem even if a code for 24-bit addressing is generated.  In the same way as described above
for the functions, accessing variables using 24-bit addressing can increase the size of the code
area.  This applies for a system in which the data area exceeds one bank (64 Kbytes). 

Even for a small or medium model in which variables are accessed using 16-bit addressing, a
variable qualified by the _ _far type qualifier can be accessed using 24-bit addressing.  Section
18.2 "Using Calls for Variables Qualified by the _ _far Type Qualifier" describes how to define
and map variables that have been qualified by the _ _far type qualifier for small and medium
models.

Table 18.1-2  Data Section Names for Small and Medium Models

Type qualifier specification Initial value 
specification

Variable area 
name

Initial value area

_ _io _ _direct const _ _near _ _far

DATA_module 
name

o DATA

o DATA_module 
name

o INIT_module 
name

DCONST_module 
name

o o INIT DCONST

o o INIT_module 
name

DCONST_module 
name

o o CONST_module 
name

CINIT_module 
name

o o o CONST CINIT

o o o CONST_module 
name

CINIT_module 
name

o DIRDATA

o o DIRINIT DIRCONST

o IO
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CHAPTER 18  MAPPING PROGRAMS IN WHICH THE DATA AREA EXCEEDS 64 Kbytes
18.2 Using Calls For Variables Qualified by the _ _far Type 
Qualifier

This section describes how to specify the _ _far type qualifier in a variable for small 
and medium models where variables are accessed using 16-bit addressing.
It is recommended that the _ _far type qualifier be specified for variables not accessed 
frequently or variables called from all functions.

■ Specifying the _ _far Type Qualifier in a Variable for Small and Medium Models

When creating a system in which the data area exceeds 64 Kbytes, a code for 24-bit addressing
will be generated even when variables mapped in the bank pointed to by the DTB are accessed.
This applies when a compact or large model is used in which all variables are accessed using
24-bit addressing.  Even for a small model in which variables mapped in the bank pointed to by
the DTB are accessed using 16-bit addressing, the _ _far type qualifier can be specified so that
the variables outside of the bank pointed to by the DTB can be accessed using 24-bit
addressing. 

When creating a system in which the data area exceeds 64 Kbytes, it is recommended that the
_ _far type qualifier be specified for some of the variables at compilation for a small or medium
model.

■ Specifying the _ _far Type Qualifier in Variables Depending on Access Frequency

The access frequency of the variables in the entire system to be developed is not defined.
Some variables are accessed frequently while others are accessed infrequently.  When creating
a system in which the data area exceeds 64 Kbytes, the variables frequently accessed are
mapped in the bank pointed to by the DTB as shown in Figure 18.2-1 "Variable Access
Relationship and Mapping Image 1".  The _ _far type qualifier can be specified for a variable
that exceeds 64 Kbytes so that the variable is mapped outside the bank pointed to by the DTB.
As a result, code for 24-bit addressing is generated only when a variable qualified by the _ _far
type qualifier is accessed.
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Figure 18.2-1  Variable Access Relationship and Mapping Image 1

[Tip] 

Softune C Analyzer: 

The Softune C Analyzer displays the functions that access the external variables in the
analyzed program.  The access relationship of the displayed variables is helpful in
determining the variables to be qualified by the _ _far type qualifier.

Variable qualified by the 
_ _far type qualifierint  val_1

int  val_2

_ _far int  gol_1

_ _far int  gol_2

DTB

Bank h'ff 

Bank h'00
Bank h'01

A variable in the bank is 
accessed using 16-bit 
addressing. 

A variable outside the bank is 
accessed using 24-bit 
addressing.

The data that cannot be 
accommodated in the bank h'00 is 
mapped in the bank h'01.
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18.3 Mapping Variables Qualified by the _ _far Type Qualifier

This section provides notes on mapping variables qualified by the _ _far type qualifier.
The output section name of a variable depends on the memory model specified at 
compilation.  A variable qualified by the _ _far type qualifier, however, is output to a 
section called "XXXX_module name" regardless of the specified memory model.

■ Memory Models and Output Sections of Variables Qualified by the _ _far Type Qualifier

The output section name of a variable is dependent on the memory model specified at
compilation.  A variable qualified by the _ _far type qualifier, however, is always output to a
section called "XXXX_module name" regardless of the specified memory model.  Sections
18.3.1 "Variables Qualified by the _ _far Type Qualifier for Small and Medium Models" and
18.3.2 "Variables Qualified by the _ _far Type Qualifier for Compact and Large Models" provide
notes on mapping variables qualified by the _ _far type qualifier for each memory model.
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18.3.1 Variables Qualified by the _ _far Type Qualifier for Small 
and Medium Models

This section provides notes on mapping variables qualified by the _ _far type qualifier 
for small and medium models in which variables are accessed using 16-bit addressing.
For small and medium models, a variable qualified by the _ _far type qualifier is output 
to a section called "XXXX_module name."

■ Code Sections of Small and Medium Models

Figure 18.3-1 "Linkage of Variables Qualified by the _ _far Type Qualifier for Small and Medium
Models" shows an image of linkage of variables qualified by the _ _far type qualifier for small
and medium models. 

For small and medium models, the output section name as a result of compilation is different for
a variable for which a _ _far type qualifier is not specified than it is for a variable for which the  _
_far type qualifier is specified.

For a variable for which a type qualifier is not specified, the variable is output to a DATA, INIT,
DCONST, or CONST section depending on the nature of the variable.  Among these sections,
the variable areas (DATA and INIT) are allocated in the bank pointed to by the DTB.  Normally,
these variable areas are allocated in the bank h’00.  As a result, a variable output in the DATA
or INIT section is accessed using 16-bit addressing. 

A variable qualified by the _ _far type qualifier is output to a section in which "_module name"
has been added to the section name.  That is, a variable qualified by the _ _far type qualifier is
output to a section called "DATA_module name," INIT_module name," "DCONST_module
name," or "CONST_module name."  These variables are accessed using 24-bit addressing.  As
a result, a section called "XXXX_module name" can be allocated in an area outside of the bank
pointed to by the DTB.
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Figure 18.3-1  Linkage of Variables Qualified by the _ _far Type Qualifier for Small and Medium Models

■ Example of Mapping Variables Qualified by the _ _far Type Qualifier (for a Small Model)

Figure 18.3-2 "Example of Mapping Variables Qualified by the _ _far Type Qualifier (for a Small
Model)" is an example of mapping variables qualified by the _ _far type qualifier compiled using
a small model.

Figure 18.3-2  Example of Mapping Variables Qualified by the _ _far Type Qualifier (for a Small Model)

A variable qualified by the _ _far type qualifier is output to a section called "XXXX_module
name."
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_ _far int C_data1;
_ _far int C_data2;
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int c2_data;

_ _far int b1 = 100;
_ _far int b2 = 200;

_ _far int B_data1;
_ _far int B_data2;

int b1_data;
int b2_data;

_ _far int a1 = 100;
_ _far int a2 = 200;

_ _far int A_data1;
_ _far int A_data2;

int a1_data;
int a2_data;

I/O area 

Register bank

DATA

INIT

DIRDATA

DIRINIT

STACK

CODE
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DIRCONST

CONST_m

INTVECT

DTB

DPR

PCB

DATA_m

INIT_m

DCONST_m

ROM area 
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h�ff ffff

h�ff ff54

h�ff 0000

h�00 0000

h�00 0180

h�00 0190

@ -AL 0
@ -ro ROM_AREA=0xFF0000/0xFFFFFF
@ -ra RAM_AREA=0x000190/0x000CFF
@ -ra FAR_RAM=0x010000/0x01FFFF
@ -sc DATA/data/BYTE+INIT/data/BYTE+DIRDATA/dir/PAGE

+DIRINIT/BYTE+STACK/stack/BYTE=RAM_AREA
@ -sc *mm/data/BYTE=FAR_RAM
@ -sc CODE/code/BYTE+*/const/BYTE

+*/dirconst/BYTE=ROM_AREA
@ -rg 0
@ -m D:¥Softune¥*¥far_*¥LST¥far_*.mp1
@ -pl 60
@ -pw 132
@ -alin D:¥Softune¥*¥far_*¥LST¥
@ -alout D:¥Softune¥*¥far_*¥LST¥
@ -na
@ -Xals
@ -Xalr
@ -w 1
@ -g
@ -cwno
@ -a
@ -cpu MB90P678
@ -o D:¥Softune¥*¥far_*¥ABS¥far_*l.abs

h�01 0000
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In this example, the h’ff bank is a ROM area.  The following sections are allocated in the h’ff
bank:

• CODE (code area)

• DCONST (initial value area of a variable)

• DCONST_m (initial value area of a variable qualified by the _ _far type qualifier for module
m)

• CONST_m (variable area of a variable qualified by the _ _far type and const type qualifiers
for module m)

• DIRCONST (initial value area of a variable qualified by the _ _direct type qualifier)

The h’00 bank and h’01 banks are a RAM area.  The following sections are allocated in the h’00
bank:

• IO_REG (I/O register variable area)

• DATA (variable area)

• INIT (area of an initialized variable)

• DIRDATA (area of a variable qualified by the _ _direct type qualifier)

• DIRINIT (area of an initialized variable qualified by the _ _direct type qualifier)

• STACK (user stack and system stack)

The sections of the following variables qualified by the _ _far type qualifier for module m are
allocated in the h’01 bank:

• DATA_m (variable area)

• INIT_m (area of an initialized variable)

Refer to this example to allocate each section based on the system to be created
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18.3.2 Variables Qualified by the _ _far Type Qualifier for 
Compact and Large Models

This section provides notes on mapping variables qualified by the _ _far type qualifier 
for compact and large models in which variables are accessed using 24-bit 
addressing.
For compact and large models, variables for which the _ _far type or _ _near type 
qualifier has not been specified and variables qualified by the _ _far type qualifier are 
output to sections called "XXXX_module name." 

■ Data Sections of Compact and Large Models

Figure 18.3-3 "Linkage of Variables Qualified by the _ _far Type Qualifier for Compact and
Large Models" is an image of linkage of variables qualified by the _ _far type qualifier for
compact and large models. 

For compact and large models, a variable for which the _ _far type or _ _near type qualifier has
not been specified is output to a section called "XXXX_module name" as a result of compilation.
A variable qualified by the _ _far type qualifier is also output to a section called "XXXX_module
name" in the same way. 

Therefore, a variable qualified by the _ _far type qualifier is output to the same section of the
same module as a variable for which the _ _far type qualifier has not been specified. 

The variables output to these sections are accessed using 24-bit addressing.  As a result, a
section called "XXXX_module name" can be allocated in RAM area other than the RAM area
pointed to by the DTB.
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Figure 18.3-3  Linkage of Variables Qualified by the _ _far Type Qualifier for Compact and Large Models

■ Example of Mapping Variables Qualified by the _ _far Type Qualifier (for a Large Model)

Figure 18.3-4 "Example of Mapping Variables Qualified by the _ _far Type Qualifier (for a Large
Model)" is an example of mapping variable qualified by the _ _far type qualifier compiled using a
large model.

Figure 18.3-4  Example of Mapping Variables Qualified by the _ _far Type Qualifier (for a Large Model)

A variable qualified by the _ _far type qualifier is output to a section called "XXXX_module
name." 
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h�fd 0000

@ -AL 0
@ -ro ROM3=0xFD0000/0xFDFFFF
@ -ro ROM2=0xFE0000/0xFEFFFF
@ -ro ROM1=0xFF0000/0xFFFFFF
@ -ra space1=0x000190/0x000CFF
@ -ra space2=0x010000/0x01FFFF
@ -ra space3=0x020000/0x02FFFF
@ -ra space4=0x030000/0x03FFFF
@ -sc *space1/data/BYTE+DIRDATA/dir/PAGE

+DIRINIT/dir/BYTE=space1
@ -sc *space2/data/BYTE=space2
@ -sc *space3/data/BYTE=space3
@ -sc STACK/BYTE=space4
@ -sc *space3/code/BYTE+*space3/const/BYTE=ROM3
@ -sc *space2/code/BYTE+*space2/const/BYTE=ROM2
@ -sc *space1/code/BYTE+*space1/const/BYTE

+*/dirconst/BYTE+*/code/BYTE+*/const/BYTE=ROM1
@ -rg 0
@ -m *:¥Softune¥*¥far_*¥LST¥far_*.mp1
@ -pl 60
@ -pw 132
@ -alin *:¥Softune¥*¥far_*¥LST¥
@ -alout *:¥Softune¥*¥far_*¥LST¥
@ -na
@ -Xals
@ -Xalr
@ -w 1
@ -g
@ -cwno
@ -a
@ -cpu MB90678
@ -o *:¥Softune¥*¥far_*¥ABS¥far_*.abs
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h�02 0000

h�01 0000
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In this example, the h’fd, h’fe, and h’ff banks are ROM area.  The following sections are
allocated in the h’fd bank:

• CODE_space3 (code area of module space3)

• CONST_space3 (variable area of a variable qualified by the const type qualifier of module
space3)

• DCONST_space3 (initial value area of a variable of module space3)

The following sections are allocated in the h’fe bank

• CODE_space2 (code area of module space2)

• CONST_space2 (variable area of a variable qualified by the const type qualifier of module
space2)

• DCONST_space2 (initial value area of a variable of module space2)

The following sections are allocated in the h’ff bank:

• CODE_space1 (code area of module space1)

• CONST_space1 (variable area of a variable qualified by the const type qualifier of module
space1)

• DCONST_space1 (initial value area of a variable of module space1)

• DIRCONST (initial value area of a variable qualified by the _ _direct type qualifier)

In this example, the h’00, h’01, h’02, and h’03 banks are RAM area.  The following sections are
allocated in the h’00 bank:

• IO_REG (I/O register variable area)

• DATA_space1 (variable area of module space1)

• INIT_space1 (area of an initialized variable of module space1)

• DIRDATA (variable area of a variable qualified by the _ _direct type qualifier)

• DIRINIT (variable area of an initialized variable qualified by the _ _direct type qualifier)

The following sections are allocated in the h’01 bank:

• DATA_space2 (variable area of module space2)

• INIT_space2 (area of an initialized variable of module space2)

The following sections are allocated in the h’02 bank:

• DATA_space3 (variable area of module space3)

• INIT_space3 (area of an initialized variable of module space3)

The following section is allocated in the h’03 bank:

• STACK (user stack and system stack)

Refer to this example to allocate each section based on the system to be created.
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18.4 Using Calls For Variables Qualified by the _ _near Type 
Qualifier

This section describes how to specify the _ _near type qualifier in a variable for 
compact and large models where variables are accessed using 24-bit addressing.
Specifying the _ _near type qualifier enables a variable mapped in the bank pointed to 
by the DTB to be accessed using 16-bit addressing.

■ Specifying the _ _near Type Qualifier in Variables for Compact and Large Models

A compact or large model in which all variables are accessed using 24-bit addressing is used
for systems in which large numbers of variables are accessed.  That is, the data area exceeds
64 Kbytes.  When a compact or large model is used, the variables are accessed using 24-bit
addressing. 

This does not mean, however, that all of the variables are accessed with the same frequency.
Some variables are accessed very frequently while others are accessed infrequently.  When 24-
bit addressing is used to access a variable that is accessed with high frequency, the code size
is increased and execution speed at access is reduced. 

As shown in Figure 18.4-1 "Variable Access Relationship and Mapping Image 2" specifying the
_ _near type qualifier when compiling a variable that is frequently accessed will generate code
for accessing the variable using 16-bit addressing.  The variable area of the variables qualified
by the _ _near type qualifier will then be set in the bank pointed to by the DTB. 

As a result, a variable mapped in the bank pointed to by the DTB can be accessed using 16-bit
addressing.  This also applies for compact and large models in which variables are accessed
using 24-bit addressing by default.
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Figure 18.4-1  Function Call Relationship and Mapping Image 2

[Tip]

Softune C Analyzer: 

The Softune C Analyzer displays the functions that access the external variables in the
analyzed program.  The access relationship of the displayed variables is helpful in
determining the variables to be qualified by the _ _near type qualifier.
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18.5 Mapping Variables Qualified by the _ _near Type Qualifier

This section provides notes on mapping variables qualified by the _ _near type 
qualifier for compact and large models in which variables are accessed using 24-bit 
addressing.
A variable qualified by the _ _near type qualifier is output to the DATA, INIT, or 
DCONST section regardless of the specified memory model.

■ Memory Models and Output Sections of Variables Qualified by the _ _near Type Qualifier

The output section name of a variable is dependent on the memory model specified at
compilation.  A variable qualified by the _ _near type qualifier, however, is output to the DATA,
INIT, or DCONST section regardless of the specified memory model. 

Figure 18.5-1 "Linkage of Variables Qualified by the _ _near Type Qualifier for Compact and
Large Models" shows an image of linkage of variables qualified by the _ _near type qualifier for
compact and large models. 

When the variable qualified by the _ _near type qualifier defined in module A, the variable
qualified by the _ _near type qualifier defined in module B, and the variable qualified by the  _
_near type qualifier defined in module C are linked,  the variables are combined into one section
regardless of the defined module.  As a result, variables qualified by the _ _near type qualifier
can be mapped in the same bank even if the variables are in different modules.  However, these
sections cannot be divided and mapped.  To divide the sections of variables qualified by the _
_near type qualifier into a section different for each module, the output section name must be
changed.
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Figure 18.5-1  Linkage of Variables Qualified by the _ _near Type Qualifier for Compact and Large 
Models
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_ _near int b1=100;
_ _near int b2=200;
_ _near int B_data1;
_ _near int B_data2;

void func_B(void)
{

}

_ _near int a1=100;
_ _near int a2=200;
_ _near int A_data1;
_ _near int A_data2;

void func_A(void)
{

}

_ _near int c1=100;
_ _near int c2=200;
_ _near int C_data1;
_ _near int C_data2;

void func_C(void)
{

}
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■ Example of Mapping Variables Qualified by the _ _near Type Qualifier (for a Compact Model)

For compact and large models, variables are accessed using 24-bit addressing.  Variables
qualified by the _ _near type qualifier, however, are accessed using 16-bit addressing on the
premise that the variables are mapped in the bank pointed to by the DTB. 

The DATA and INIT sections must be allocated in the h’00 bank pointed to by the DTB.

Figure 18.5-2  Example of Mapping Variables Qualified by the _ _near Type Qualifier (for a Compact 
Model)

In this example, the h’ff bank is ROM area.  The following sections are allocated in the h’ff bank:

• CODE (code area)

• DIRCONST (initial value area of a variable qualified by the _ _direct type qualifier)

• CONST_space1 (area of a variable qualified by the const type qualifier for module space1)

• CONST_space2 (area of a variable qualified by the const type qualifier for module space2)

• CONST_space3 (area of a variable qualified by the const type qualifier for module space3)

• DCONST (initial value area of a variable qualified by the _ _near type qualifier)

• DCONST_space1 (initial value area of a variable of module space1)

• DCONST_space2 (initial value area of a variable of module space2)

• DCONST_space3 (initial value area of a variable of module space3)

In this example, the h’00, h’01, h’02, and h’03 banks are RAM area.  The following sections are
allocated in the h’00 bank:

• IO_REG (I/O register variable area)

• DATA (variable area of a variable qualified by the _ _near type qualifier)

• INIT (variable area of an initialized variable qualified by the _ _near type qualifier)

• DIRDATA (variable area of a variable qualified by the _ _direct type qualifier)
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h�ff ffff

h�ff ff54
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@ -AL 0
@ -ro ROM_AREA=0xFF0000/0xFFFFFF
@ -ra RAM_sapce1=0x000190/0x000CFF
@ -ra RAM_space2=0x010000/0x01FFFF
@ -ra RAM_space3=0x020000/0x02FFFF
@ -ra RAM_space4=0x030000/0x03FFFF
@ -sc DATA/data/BYTE+INIT/data/BYTE+DIRDATA/dir/PAGE

+DIRINIT/dir/BYTE+*space1/data/BYTE=RAM_sapce1
@ -sc *_space2/data/BYTE=RAM_space2
@ -sc *_space3/data/BYTE=RAM_space3
@ -sc STACK/stack/BYTE=RAM_space4
@ -sc CODE/code/BYTE+DIRCONST/dirconst/BYTE

+CONST*/const/BYTE+DCONST*/const/BYTE
+*/const/BYTE=ROM_AREA

@ -rg 0
@ -m D:¥Softune¥*¥near_*¥LST¥near_*.mp1
@ -pl 60
@ -pw 132
@ -alin D:¥Softune¥*¥near_*¥LST¥
@ -alout D:¥Softune¥*¥near_*¥LST¥
@ -na
@ -Xals
@ -Xalr
@ -w 1
@ -g
@ -cwno
@ -a
@ -cpu MB90P678
@ -o D:¥Softune¥*near_*¥ABS¥near_*.abs
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• DIRINIT (variable area of an initialized variable qualified by the _ _direct type qualifier)

• DATA_space1 (variable area of module space1)

• INIT_space1 (variable area of an initialized variable of module space1)

The following sections are allocated in the h’01 bank:

• DATA_space2 (variable area of module space2)

• INIT_space2 (variable area of an initialized variable of module space2)

The following section is allocated in the h’02 bank:

• DATA_space3 (variable area of module space3)

• INIT_space3 (variable area of an initialized variable of module space3)

The following section is allocated in the h’03 bank:

• STACK (user stack and system stack)

Refer to this example to allocate a section based on the system to be created.
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